分子动力学反应力场已使众多材料类别的研究成为可能。与电子结构计算相比,这些力场的计算成本低,并且可以模拟数百万个原子。然而,传统力场的准确性受到其功能形式的限制,阻碍了持续改进和完善。因此,我们开发了一种基于神经网络的反应原子间势,用于预测含能材料在极端条件下的机械、热和化学响应。训练集以自动迭代方法扩展,包括各种 CHNO 材料及其在环境和冲击载荷条件下的反应。这种新势在环境和冲击载荷条件下的爆炸性能、分解产物形成和振动光谱等各种特性方面,比目前最先进的力场具有更高的准确性。
Martini 粗粒度力场 Martini 3 的最新重新参数化提高了该模型在预测分子动力学模拟中的分子堆积和相互作用方面的准确性。在这里,我们描述了如何在 Martini 3 框架内精确参数化小分子,并提供了一个经过验证的小分子模型数据库。我们特别关注脂肪族和芳香族环状结构的描述,这些结构在溶剂和药物等小分子或蛋白质和合成聚合物等大分子的构成块中普遍存在。在 Martini 3 中,环状结构由使用更高分辨率粗粒度颗粒(小颗粒和微小颗粒)的模型描述。因此,本数据库构成了校准新 Martini 3 小颗粒和微小颗粒尺寸的基石之一。这些模型表现出出色的分配行为和溶剂性能。还捕获了不同本体相之间的可混溶性趋势,从而完成了参数化过程中考虑的一组热力学性质。我们还展示了新的珠子尺寸如何能够很好地表示分子体积,从而转化为更好的结构特性,例如堆叠距离。我们进一步介绍了设计策略,以构建复杂度更高的小分子的 Martini 3 模型。
摘要:合金和实心溶液的合理设计依赖于相图的准确计算预测。群集扩展方法已被证明是研究无序晶体的宝贵工具。但是,由于计算成本,振动熵的影响通常被忽略。在这里,我们设计了一种方法,可以通过将机器学习力场(MLFF)拟合到群集扩展结构可用的松弛轨迹中,以低计算成本在集群扩展中包括振动自由能。我们演示了两个(伪)二进制系统的方法,Na 1 -x k x cl和ag 1 -x pd x,为此,准确的声子分散剂和振动自由能来自MLFF。对于两个系统,振动效应的包含导致在实验相图中与可见性差距明显更好地吻合。这种方法可以使振动效应在计算的相图中常规包含,从而更准确地预测了材料混合物的性能和稳定性。
摘要:分子动力学模拟已在不同的科学领域使用,以研究广泛的物理系统。但是,计算的准确性是基于描述原子相互作用的模型。特别是,从头算分子动力学(AIMD)具有密度功能理论(DFT)的准确性,因此仅限于小型系统和相对较短的模拟时间。在这种情况下,神经网络力场(NNFFS)具有重要作用,因为它们提供了一种规避这些警告的方法。在这项工作中,我们研究了在DFT级别设计的NNFFs,以描述液态水,重点介绍了所考虑的训练数据集的大小和质量。我们表明,与动态数据相比(例如扩散系数)相比,结构属性较少依赖于训练数据集的大小,并且良好的采样(选择训练过程的数据参考)可以以良好的精度导致一个小样本。■引言分子动力学模拟已在不同的科学领域中使用,以研究广泛的物理系统,例如液体的热力学特性以及接口和生物分子的物理化学方面。1-3它的成功依赖于许多因素,例如,分配的功能形式用于描述原子间相互作用和原子体内相互作用,参数化程序(获得潜在的参数)以及所采用的实验性或从头算的数据质量。11,因此,可转移性和准确性是这一研究领域的常见问题。5、7、124、5、7-10大多数经典电位都是物理和/或化学动机的,其中通常认为简单的分析功能形式,例如Lennard-Jones的电位。
摘要:与石墨烯和石墨相互作用的准确模拟模型对于纳米流体应用很重要,但是现有的力场产生的接触角却大不相同。我们对实验文献的广泛审查揭示了报道的石墨烯 - 水接触角度的极端变化以及石墨 - 水接触角的聚类 - 与新鲜去角质(60°±13°)的组和非腐蚀性去除的石墨表面。与实验结果的平均结果相一致,相对于无限距离切割极限的60°石墨 - 水接触角度优化了经典力场的碳 - 氧性分散能。也得出了有限截止的相互作用力场。引入了平面平衡模拟的压力张量的接触角方法,它理想地适合石墨和石墨烯表面。我们的方法论广泛适用于任何液体表面组合。
摘要:我们使用基于神经网络力场的平衡分子动力学模拟探索了含有缺陷的双层PTST的声子传输性能。缺陷证明在降低结构的热导率方面非常有效,并且花缺陷具有与双重空缺相当的效果特别强大。此外,由于在高温下结构不稳定性而导致的结构的电导率表现出异常的温度依赖性。,我们通过预测的状态声子密度来研究对缺陷围绕正常模式的失真,并找到包括局部模式和蓝移的多种现象。■引言二维(2D)晶体通常具有缺陷,可以通过各种方法在合成过程中意外或故意引入它们。1研究这些缺陷对2D材料中声子传输的影响不仅对于在现实条件2,3中理解热传输物理学至关重要,还要为诸如热电和光电设备等应用找到最佳候选系统,以及热晶体管。1,4
摘要:胆固醇是生物膜中的一个中心构建块,它诱导定向顺序,减慢扩散,使膜僵硬以及驱动结构域的形成。分子动力学(MD)模拟在分子水平解决这些效果方面起着至关重要的作用。然而,最近显而易见的是,不同的MD力场在定量不同的行为上预测了不同的行为。尽管很容易被忽视,但由于磁场迅速发展朝模拟体内条件的复杂膜的模拟迅速发展:相关的多组分仿真必须准确捕获其基本构件之间的相互作用,例如磷脂和胆固醇。在这里,我们定义了针对C-H键顺序参数的二元脂质混合物模拟的定量质量度量,以及来自NMR光谱的侧向扩散系数以及X射线散射的构型因子。基于这些措施,我们对常用的力场描述棕榈酰丙酰磷脂酰胆碱(POPC)和胆固醇的二元混合物的结构和动力学的能力进行系统评估。没有测试的力场清楚地表现出在经过测试的属性和条件上的表现。仍然,SlipID参数在我们的测试中提供了最佳的总体性能,尤其是当评估中包含动态属性时。这项工作中介绍的质量评估指标将尤其是使用自动方法来促进多组分膜的未来力量现场开发和改进。
1捷克科学学院生物物理学研究所,Královopolská135,612 00 Brno,捷克共和国Brno 2捷克高级技术研究所,Catrin,Catrin,Palacký大学,K例科夫斯科夫斯科夫斯科夫斯科佛511/8 Ostrava,17。Listopadu2172/15,708 00 Ostrava-Poruba,捷克共和国和联合优先的作者。*对应作者:Miroslav Krepl电子邮件:krepl@ibp.cz摘要由RNA和DNA链形成的抽象混合双螺旋(通常称为混合双链体或杂交),在转录和反向转录等生物学过程中至关重要。它们对于他们在CRISPR基因编辑和纳米技术中的应用也很重要。,尽管它们具有重要意义,但杂种很少以原子分子动力学方法进行建模,并且没有基准研究系统地评估了力场的性能。在这里,我们介绍了使用现代和常用的成对添加剂和可极化的核酸力场的杂种进行广泛的基准研究。我们的发现表明,任何可用的力场选择都没有准确地重现混合动力的所有特征结构细节。琥珀色力场无法填充DNA链的C3'-endo(北)冰球和低估的倾斜度。charmm力场准确地描述了C3'-endo冰球和倾斜度,但显示了基对的不稳定性。可极化的力场与准确再现螺旋参数的努力。某些力场组合甚至表现出RNA和DNA参数之间的明显冲突。在这项工作中,我们对混合DNA/RNA双链体的力场性能进行了坦率的评估。我们为选择可利用的力场组合提供指导,并突出显示潜在的陷阱和获得最佳性能的最佳实践。引言基因表达过程不可避免地涉及转录过程中混合RNA和DNA双链体(杂种)的形成,而新鉴定的RNA链暂时将基础与DNA模板配对。1在逆转录期间发生相反的过程,
组件模型。这些分类从3到20组分的Sara(饱和,芳香族,树脂,沥青质)的任何地方。由于沥青分子的迁移率取决于各个分子之间的相互作用,因此使用各种不同的力场模型对组件模型进行建模。一个模拟的能量由动能和势能组成,可以使用力场来描述不同原子和分子之间的分子间力。可以使用许多不同的力场,但是一个常见的是凝聚相优化的原子模拟研究的分子潜力(Compass),并在lammps中实施。还有其他人,您不应该局限于任何特定的特定。
摘要:由于表示所有原子的计算复杂性,经典分子动力学 (MD) 模拟在原子分辨率(细粒度级别,FG)下对大多数生物分子过程的应用仍然有限。这个问题在具有非常大构象空间的基于蛋白质的生物分子系统存在的情况下被放大,并且具有细粒度分辨率的 MD 模拟具有探索该空间的缓慢动态。文献中当前的可转移粗粒度 (CG) 力场要么仅限于以隐式形式编码环境的肽,要么无法捕获从氨基酸一级序列到二级/三级肽结构的转变。在这项工作中,我们提出了一种可转移的 CG 力场,它明确表示环境,以便对蛋白质进行精确模拟。力场由一组代表不同化学基团的伪原子组成,这些化学基团可以连接/关联在一起以创建不同的生物分子系统。这保留了力场在多种环境和模拟条件中的可转移性。我们添加了可以响应环境异质性/波动的电子极化,并将其与蛋白质的结构转变耦合。非键合相互作用通过基于物理的特征(例如通过热力学计算确定的溶剂化和分配自由能)进行参数化,并与实验和/或原子模拟相匹配。键合势是从非冗余蛋白质结构数据库中的相应分布推断出来的。我们通过模拟经过充分研究的水蛋白系统来验证 CG 模型,这些系统具有特定的蛋白质折叠类型 Trp-cage、Trpzip4、villin、WW-domain 和 β - α - β 。我们还探索了力场在研究 A β 16-22 肽的水聚集中的应用。■ 简介蛋白质分子的生理功能与其相关结构和动力学密切相关。1、2