摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
开发了一种新型混合熔覆工艺,通过结合直接能量沉积 (DED) 和超声纳米晶体表面改性 (UNSM) 来控制内层金属熔覆层的力学性能。混合工艺允许操纵熔覆层的内部和外部力学性能,以获得所需的表面和体积性能。为了验证该方法的有效性,对 Inconel-718 熔覆层在 200 和 400 C 高温下进行了耐磨性试验,并证实耐磨性分别提高到 25.4% 和 14.4%。这项工作分析了 DED 工艺中有无 UNSM 处理的耐磨特性。所提出的方法是改变熔覆层内部力学性能的一种有前途的方法,具有很高的可控性和可重复性。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
1 华南理工大学机电与汽车工程学院,广州 510641;mewdlaser@scut.edu.cn (DW); 202020100649@mail.scut.edu.cn (HW); xjchan001@163.com (XC) 2 宁波大学冲击与安全工程教育部实验室,宁波 315211 3 攀钢集团研究院有限公司钒钛资源综合利用国家重点实验室,攀枝花 617000;ludong_1786@163.com (DL); cgvermouth2022@163.com (XL) 4 四川省先进金属材料增材制造工程技术研究中心,成都先进金属材料产业技术研究院有限公司,成都 610300,中国 * 通讯作者:liuyang1@nbu.edu.cn (YL); cjhan@scut.edu.cn (CH)
摘要 金属基复合材料 (MMC) 因其增强的机械性能而广泛用于各种应用。MMC 能够减轻结构重量,从而降低燃料消耗,因此在地面运输和航空领域尤其具有吸引力。在本研究中,通过搅拌铸造 [SC] 路线生产了用二硼化锆 (ZrB 2 ) 增强的 AA2017。增强颗粒 ZrB 2 以不同的重量百分比 0、5、10 和 15 混合。根据 ASTM 标准,对铸造样品进行机械表征,例如显微硬度和拉伸测试以及扫描电子显微镜 (SEM) 分析。SEM 分析表明 ZrB 2 颗粒在 AA2017 基体中分散均匀,团聚较少。机械测试结果显示性能有所改善,并且这是针对 AA2017-15wt.% ZrB 2 合成复合材料实现的。显微硬度测试显示,与基础铸态合金相比,VHN 值增加了约 101 (40.28%)。极限抗拉强度 (UTS) 也比铸态合金提高了约 155 MPa (59.79%)。
摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
动态再结晶完成后,在附加塑性变形热的作用下,部分较大晶粒吞噬较小晶粒并融合为较大晶粒,导致晶粒长大。由于塑性变形热小于摩擦热输入,因此增加进给速率引起的晶粒尺寸增大较小。发生动态回复和连续动态再结晶,其特征是亚晶粒形成和大晶粒相变比例增加。随着应变的增加,大晶粒相变转变为大晶粒相变,大晶粒相变数量分数越大,表示再结晶程度越高。如图7所示,N0.1和NO.2的大晶粒相变数量分数大于NO.3,说明NO.1和NO.2的再结晶程度
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
微观结构和力学性能的结果。数值结果表明,由于材料沉积在高温底板上,温度梯度显著降低,热应力降低40%。降低的热应力和温度梯度导致晶粒变粗,进而导致硬度和抗拉强度降低,尤其是对于靠近底板的底部区域。同时,没有发现对延展性的显著影响。此外,高温底板沿建造方向的硬度和拉伸性能的不均匀性较小。当前的研究展示了对底板预热对热应力、微观结构和力学性能及其相关性的影响的集体和直接的理解,这被认为有利于更好地利用底板预热的积极作用。
摘要:熔融生长氧化铝基复合材料因其在航空航天应用方面的潜力而受到越来越多的关注;然而,快速制备高性能部件仍然是一个挑战。本文提出了一种使用定向激光沉积(DLD)3D 打印致密(< 99.4%)高性能熔融生长氧化铝-莫来石/玻璃复合材料的新方法。系统研究了复合材料的关键问题,包括相组成、微观结构形成/演变、致密化和力学性能。利用经典断裂力学、格里菲斯强度理论和固体/玻璃界面渗透理论分析了增韧和强化机制。结果表明,复合材料由刚玉、莫来石和玻璃或刚玉和玻璃组成。随着初始粉末中氧化铝含量的增加,由于成分过冷度的减弱和小的成核过冷度,刚玉晶粒逐渐从近等轴枝晶演变为柱状枝晶和胞状结构。氧化铝含量为 92.5 mol%时显微硬度和断裂韧性最高,分别为 18.39±0.38 GPa 和 3.07±0.13 MPa·m 1/2 ;氧化铝含量为 95 mol%时强度最高,为 310.1±36.5 MPa。强度的提高归因于微量二氧化硅掺杂提高了致密性,同时消除了残余应力。该方法揭示了利用 DLD 技术制备致密高性能熔融生长氧化铝基复合材料的潜力。关键词:激光;增材制造;氧化铝;莫来石;微观结构;力学性能