本研究研究并比较了不同热处理 (HT) 对采用激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 技术制备的 Monel K500 的微观结构和力学性能的影响。由于制备过程中诱导的高冷却速度,制备的 Monel K500 试样表现出树枝状微观结构和元素微偏析。使用四种不同的 HT 程序(包括热等静压 (HIP)、固溶退火 (SA) 和时效)研究了文献中提出的 HT 对锻造 Monel K500 的适用性。使用室温单轴拉伸试验评估试样的力学性能。使用扫描电子显微镜分析了 HT 过程中试样的微观结构演变。对于所有研究的 HT 条件,与 LP-DED 试样相比,L-PBF Monel K500 试样始终表现出更高的强度和更低的延展性。 HT 工艺包括在 1160°C 下以 100 MPa 的压力进行 3 小时的 HIP、在 1100°C 下进行 15 分钟的 SA,以及在 610°C 下进行 16 小时、在 540°C 下进行 6 小时和在 480°C 下进行 8 小时的三步时效,从而使 L-PBF 和 LP-DED 制备的 Monel K500 均具有最高强度。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
1.1.2 冲压喷气发动机...................................................................................................................... 8
摘要:本文回顾了纳米颗粒技术在铝基合金增材制造 (AM) 方面的现状。对常见的 AM 工艺进行了概述。增材制造是制造业进步的一个有前途的领域,因为它能够生产出近净成型的部件,并且在最终使用之前只需进行最少的后处理。AM 还允许制造原型以及经济的小批量生产。通过 AM 加工的铝合金由于其高强度重量比,将对制造业非常有益;然而,许多传统的合金成分已被证明与 AM 加工方法不兼容。因此,许多研究都着眼于改善这些合金的加工性的方法。本文探讨了使用纳米结构来增强铝合金的加工性。结论是,添加纳米结构是改进现有合金的一种有前途的途径,并且可能对其他基于粉末的工艺有益。
本研究的目的是调查将聚氯乙烯 (PVC) 废料用作混凝土制造材料而无需预处理的可能性。目的还在于通过在混凝土中稳定和固化 PVC 废料,为限制环境污染和自然资源开发做出贡献。本实验研究的目的是通过与普通混凝土 (OC) 进行比较,通过实验评估 PVC 混凝土的新鲜和固化性能。本研究包括收集 PVC 废料,尤其是自然界废弃的旧 PVC 管,并通过用不同体积比 (5%、10% 和 15%) 的沙子替代将其掺入混凝土中。在本研究中,考虑了两种不同形状 (纤维和细) 的 PVC。根据测试结果,在混凝土中添加 PVC 废料作为天然沙子的部分替代品会降低新鲜混凝土的可加工性。我们注意到,与细 PVC 混凝土相比,含有 PVC 纤维的混凝土的可加工性较低。我们还观察到 PVC 纤维提高了混凝土的抗压强度。随着 PVC 废料的替代率增加,抗压强度也随之增加。然而,细 PVC 比例的增加会导致抗压强度下降。对于 PVC 纤维含量高且 PVC 细度适中的混凝土混合物,可以获得更好的机械性能系数 (MPF)。收集的结果将为回收混凝土混合物中的 PVC 废料提供有用的信息。
试验数据可知,在激光功率1400W、层厚1.0mm、扫描速度600mm/min、扫描间距1.3mm、成形角90°条件下,DED制备的Inconel718试件性能最好,其极限抗拉强度(UTS)和宏观硬度分别为1016.10MPa和36.2HRC。DED制备的Inconel718试件的UTS与传统锻造制备的Inconel718接近,且硬度更高。
摘要:本研究调查了使用 CO₂ 激光焊接工艺生产的 AISI 304 钢焊缝的机械和微观结构行为。重点是了解不同焊接条件对 2 毫米厚钢板的影响。焊接在三种条件下进行:无根部开口的自热焊、使用填充金属的 1 毫米根部开口焊接以及使用填充金属但没有根部开口的焊接。使用扫描电子显微镜 (SEM)、显微硬度测试、单轴疲劳测试和随后的断口检查分析了接头。微观结构分析表明,在所有条件下,自热焊缝中存在大量孔隙,并且主要形成 delta 铁素体和板条状铁素体相。在机械性能方面,自热焊缝在母材中表现出断裂,而使用填充金属的焊缝在焊缝金属附近表现出断裂。尽管平均抗疲劳性存在明显差异,但自热焊缝和使用填充金属但没有根部开口的焊缝表现出更高的失效循环次数。关键词:激光焊接,不锈钢,微观组织,力学性能,疲劳 1. 引言
所需的承载能力。 [1,4] 受这种各向异性结构的启发,定向增强材料被引入承重材料中,以在所需的方向上实现最大可能的机械性能。 [5] 仿生结构通常用于工程领域,以制造各向异性材料,这些材料可定向增强强度、膨胀或热性能,并执行特定功能,如可调形状恢复、极化图案或流体阻力。 [4] 这些各向异性材料引起了人们对组织工程 (TE) 的长期研究兴趣,以模拟生物组织的机械强度。包括心肌、动脉、静脉在内的软生物组织的强度和弹性[6,7] 在断裂拉伸强度为 1-10 MPa,弹性模量为 1-30 MPa 范围内。 [8,9] 迄今为止,人们已经研究和开发了各种材料和方法,目的是复制或至少模仿生物组织的结构、机械和功能特征。这样做的动机是为了增加我们的基本理解,[10,11] 影响 TE 中的细胞生长,[12] 或将材料用作医学模型。[13]
摘要:高熵合金的设计原理是将多种化学元素以相等或接近相等的比例混合,以创建具有独特性能的新合金,例如高强度、延展性和耐腐蚀性。高熵合金的某些性能可以通过引入新的掺杂元素来调整,掺杂元素的选择需根据工作条件而定。研究了 Ti 掺杂对高熵合金 CoCrFeMoNi 微观结构、显微硬度和弹性模量的影响。微观结构分析表明,合金的核心结构由面心立方 (FCC) 和体心立方 (BCC) 相组成,同时形成了 Laves 相。Ti 的加入使合金晶粒细化,降低了枝晶间和枝晶区域之间的 Mo 浓度差。Ti 掺杂的结果是,合金的显微硬度从 369 HV 0.2 增加到 451 HV 0.2。 Ti 掺杂使断裂强度值增加了一倍,尽管 CoCrFeMoNi 合金的弹性模量没有发生显著变化。
研究了铸态和T6态金属盐反应制备的TiB2颗粒增强A356基复合材料的组织与力学性能。对制备的复合材料的显微组织观察表明,原位生长的TiB2颗粒形状规则,在A356基体中分布均匀,A356基体与TiB2颗粒之间有清晰的界面。对铸态和T6态制备的复合材料的力学性能进行详细分析表明,随着A356基体中原位TiB2颗粒质量分数(wt%)的增加,制备的复合材料的极限拉伸强度和杨氏模量增大,但随着TiB2颗粒质量分数的增加,制备的复合材料的泊松比减小。与A356合金相比,随着TiB 2 颗粒质量分数的增加,复合材料的杨氏模量提高了10.8%,泊松比降低了3.2%;随着TiB 2 颗粒质量分数的增加,复合材料的屈服强度先降低(当TiB 2 颗粒质量分数小于1%时)后升高,而伸长率和断面收缩率则先升高后降低。此外,T6热处理可以细化晶粒,有效提高复合材料的力学性能。
