摘要 不锈钢、钛合金、钴铬合金等金属材料是应用最为广泛的骨科植入物,但在临床应用中仍存在金属与骨的力学不匹配、炎症、二次手术等问题。镁及其合金作为新一代医用金属材料,由于其优异的生物降解性而备受关注。可生物降解的镁基金属具有良好的力学性能和成骨性能,有望成为治疗棘手骨科疾病的植入材料。但腐蚀速度快仍是制约其临床应用的主要挑战之一,合金化和表面改性是控制镁合金腐蚀速度的有效方法。本文综述了可生物降解镁合金的力学性能、生物性能及其在临床应用中存在的问题,重点介绍了镁基金属在合金化和表面改性方面的最新进展,并介绍了镁基植入物在骨科的应用现状。
a UNIDEMI,机械与工业工程系,里斯本新大学科学技术学院,Caparica 2829-516,葡萄牙 b 智能系统联合实验室,LASI,吉马良斯 4800-058,葡萄牙 c 里约热内卢联邦大学(UFRJ)冶金与材料工程项目,CEP,里约热内卢 RJ 21941-972,巴西 d Helmholtz-Zentrum Hereon,材料物理研究所,Max-Planck-Str. 1,Geesthacht 21502,德国和南京理工大学材料科学与工程学院 Herbert Gleiter 纳米科学研究所,南京 210094,中国 f Institut Pprime,UPR CNRS 3346,材料物理和力学系,ISAE-ENSMA,1 Avenue Cl´ement Ader,BP 40109,Chasseneuil,Futuroscope 86 961,法国 g CENIMAT|i3N,里斯本新大学科学与技术学院材料科学系,卡帕里卡,葡萄牙
摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。
摘要:Ti6Al4V 合金具有高比机械性能、优异的耐腐蚀性和生物相容性等独特特性,是一种适用于各种工程应用的理想轻质结构金属。本文详细介绍了选择性激光熔化 Ti6Al4V 零件的机械性能,以及影响最终性能的主要加工和微观结构参数。通过将 Ti6Al4V 零件的微观结构特征与最终机械性能联系起来,提供基础知识,包括拉伸强度、拉伸应变、抗疲劳性、硬度和磨损性能。本文还对激光粉末床熔合与传统加工方法进行了比较。本文还批判性地讨论了成品 Ti6Al4V 零件中存在的缺陷及其对机械性能的影响。文献中的结果表明,当考虑植入物和航空航天应用标准的最低值时(例如 ASTM F136-13;ASTM F1108-14;AMS4930;AMS6932),典型的激光粉末床熔融 Ti6Al4V 拉伸性能(屈服强度 >900 MPa 和拉伸强度 >1000 MPa)是足够的。
摘要 激光粉末床熔化Al-8.3Fe-1.3V-1.8Si合金的工艺参数与组织和力学性能之间的关系研究较少,因此,选取两种参数的全致密合金来研究这一关键问题。结果表明:低功率和扫描速度的合金(S200)呈现扇壳状熔池和激光轨迹,而另一种合金(S350)呈现更深更宽的熔池。两种合金均获得了非均匀微观组织,熔池(MP)中没有第二相,熔池边界(MPB)中有纳米相。MP和MPB中固溶强化和Orowan强化的差异导致压缩屈服强度的差异(S200:380±14 MPa和S350:705±16 MPa),非均匀纳米硬度导致不同的裂纹行为和失效应变。研究表明,调整工艺参数是控制该合金组织和力学性能的有效方法。
摘要:为研究再生塑料颗粒对混凝土物理力学性能的影响,设计了掺量为0、3%、5%和7%(以重量计)的再生塑性混凝土,测定了其抗压强度、劈拉强度以及养护过程中吸水引起的质量变化。研究结果表明:在混凝土中加入再生塑料可以提高混凝土的强度,其中,再生塑料掺量为5%时混凝土的抗压强度和劈拉强度最好。随着再生塑料掺量的增加,早期强度的发展速度变慢。硅烷偶联剂对再生塑性混凝土强度有积极作用,混凝土在早期吸水饱和阶段已基本完成,硅烷偶联剂的掺入使得混凝土的孔隙率降低,混凝土的吸水性能变差。通过总结再生塑性混凝土的物理力学性能可以发现,再生塑料的掺入对于混凝土材料改性是一种有效的方法。在控制再生塑料掺量的情况下,掺再生塑料骨料混凝土强度能够满足工程要求。
利用纳米技术递送疫苗和调节免疫力在癌症治疗中显示出巨大的潜力。基于肽的超分子水凝胶作为新型疫苗佐剂已被发现能有效提高免疫反应和肿瘤疗效。在本研究中,我们设计了一组还原响应性自组装肽前体(Fbp-G DFDFDYD(E、S 或 K)-ss-ERGD),其可被谷胱甘肽(GSH)还原为 Fbp-G DFDFDYD(E、S 或 K)-SH,以形成具有不同表面特性的水凝胶(分别为 E-gel、S-gel 和 K-gel)。使用相同的方法,也可以通过在 GSH 还原之前将不同的前体与抗原混合来制备共组装水凝胶疫苗(分别为 E-vac、S-vac 和 K-vac)。通过TEM观察纳米结构,我们发现所有共组装水凝胶,尤其是K-vac,与无抗原水凝胶相比,具有更致密、更统一的纳米纤维网络,非常适合用于抗原储存和疫苗递送。虽然这三种肽采用了相似的β-片层二级结构,但它们所形成的共组装水凝胶疫苗的力学性能明显不同。与E-vac相比,S-vac的力学性能弱得多,而K-vac的力学性能高得多。体内实验中,共组装水凝胶疫苗,尤其是K-vac,也比其他两种疫苗更显著地促进了抗体的产生和抗肿瘤免疫反应。我们的结果表明,由肽和抗原共组装形成的共组装水凝胶可以作为有效的疫苗递送系统来促进抗体的产生,并且可以通过调节所涉及自组装肽的表面性质来获得不同的免疫效果。
摘要:钛合金具有重量轻、强度高、耐热腐蚀等优点,但其优异的力学性能与其组织结构密切相关,在焊接、表面强化、修复等加工过程中需要采用创新的加工方式来保证晶体组织的细化,以满足强度提高、力学性能提高和整体强度提高的要求。通过对Ti-6Al-4V合金表面进行激光直接熔化,比较了连续激光与调制激光模式下熔池的差异。在相同功率下,激光熔池热影响区可缩小为连续激光的1/3。连续激光在高能量密度的作用下可以获得深熔池。不同的熔体穿透深度会导致拉伸性能变化很大。在高频(20 kHz)调制激光作用下可以获得高密度、细晶粒的熔池。包含重熔区的不同熔深深度之间的拉伸试样的力学性能与基体接近,研究结论可为激光重熔加工技术的开发提供技术支持。
从图 8A 的 SEM 结果中还可以观察到,纯 EP 树脂的断口形貌具有非常光滑的横截面和光滑的结构,呈现出明显的河流状形貌,这是典型的脆性断裂特征,表明纯 EP 树脂表现出有限的力学性能。然而,当添加适当含量的 S-TiO 2 (4.0 wt%) 时,EP 树脂的
日常生活中先进复合材料的使用量不断增加,并取代了现有的整体材料。这些复合材料是根据人类的特定应用需求而设计和制造的,也符合标准要求。在本研究中,从农业和工业废弃物中提取的陶瓷增强材料铝金属基复合材料,即AA7075/焊渣和 AA7075/稻壳灰通过液态金属搅拌铸造路线制造,增强材料含量在基体中从 2 到 12(wt.%)不等。测量了 AA 7075 金属基复合材料的机械和微观结构特性,并与基材进行了比较。结果表明,复合材料的机械强度和硬度有所提高。在增强颗粒浓度较高的情况下,冲击能量也显著提高。复合材料的冲击能量在 9% 和 12% 时增加到 3 J,12% 焊渣 MMC 获得的最大抗拉强度为 173 MPa。12% 焊渣 MMC 获得的最高硬度为 98 BHN。此外,微观结构结果反映了搅拌铸造工艺的显著晶粒细化,基质中具有良好的界面特性,农用增强材料颗粒分散均匀。关键词:力学性能;工业废弃物;AA7075;农业废弃物;微观结构分析