1 伍斯特理工学院生物医学工程系,美国马萨诸塞州伍斯特;2 伦敦帝国理工学院戴森设计工程学院,英国伦敦;3 西部大学工程学院机械与材料工程系,加拿大伦敦 ON N6A 5B9;4 宾夕法尼亚州立大学生物医学工程系机械与核工程系,美国宾夕法尼亚州大学公园市;5 德克萨斯大学圣安东尼奥分校生物医学工程系,美国德克萨斯州圣安东尼奥;6 弗吉尼亚大学机械与航空航天工程系,美国弗吉尼亚州夏洛茨维尔;7 斯特拉斯堡大学,IMFS-CNRS,2 rue Boussingault,67000 斯特拉斯堡,法国;8 都柏林大学学院机械与材料工程学院,爱尔兰都柏林 4 贝尔菲尔德; 9 瑞典皇家理工学院神经元工程系,Ha¨ lsova¨ gen 11C, 141 57 Huddinge,瑞典;10 美国北卡罗来纳州温斯顿塞勒姆维克森林医学院生物医学工程系
摘要:不对称器官系统的许多方面都受致病生物体通路的对称模型 (R&L) 控制,但体节和肢芽等敏感物质需要避免其影响。由于对称和不对称结构由相似或附近的物质发展而来,并利用许多相同的信号通路,因此实现对称变得更加困难。在此,我们旨在从二维量子演算(q 演算、q 类似物或 q 疾病)的角度概括一些重要的测量,包括分形的维数和 Tsallis 熵(二维量子 Tsallis 熵 (2D-QTE))。该过程基于从量子演算的角度对 Tsallis 熵的最大值进行概括。然后,通过考虑最大的 2D-QTE,我们设计了一个离散系统。作为应用,我们利用 2D-QTE 描绘了一个受到致病生物 (DCO) 感染的离散动态系统。我们研究系统的正解和最大解。研究了平衡和稳定性。我们还将基于 2D-QTE 开发一种新颖的基本生殖率设计。
癫痫是全球最常见的神经系统疾病之一。最近的研究结果表明,大脑是一个由神经元网络组成的复杂系统,癫痫发作被认为是其相互作用产生的一种新特性。基于这一观点,网络生理学已成为一种有前途的方法,用于探索大脑区域如何在健康状态和危重疾病条件下协调、同步和整合其动态。因此,本文的目的是介绍(动态)贝叶斯网络 (DBN) 的应用,以基于使用阈值分析发现的弧数对诱发癫痫发作的大鼠的局部场电位 (LFP) 数据进行建模。结果表明,DBN 分析捕捉到了发作过程中大脑连接的动态特性,以及与神经生物学的显著相关性,这些相关性源于采用药理学操作、病变和现代光遗传学技术的开创性研究。根据所提出的方法评估的弧与以前的文献取得了一致的结果,此外还展示了功能连接分析的稳健性。此外,它还提供了令人着迷的新颖见解,例如前肢阵挛和全身性强直阵挛性癫痫 (GTCS) 动态之间的不连续性。因此,DBN 与阈值分析相结合可能是研究脑回路及其动态相互作用的绝佳工具,无论是在稳态条件下还是在功能障碍条件下。
该文档包含在 Internet 上 - 包含在 25 岁以下的公开数据中,以实现非凡的效果。直到文档中包含了有关所有其他操作、操作、操作和操作的文档,以及用于操作和维护的操作和操作的所有信息。整个过程中,所有的信息都将被显示出来。所有安南和vändning av 文档kräver upphovsmannens medgivande。对于保护、维护和管理而言,这是技术和管理艺术的一部分。 Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller Presenteras i sådan form eller i sådant请注意以下事项:有关信息请参见林雪平大学电子出版社 http://www.ep.liu.se/。
ISSN 1330-3651 (印刷版), ISSN 1848-6339 (在线版) https://doi.org/10.17559/TV-20201129072212 原创科学论文 巷道非直壁段锚喷支护力学模型及参数优化 程云海,李峰辉*,李刚伟 摘要:巷道锚喷支护一般采用梁模型计算,但巷道弯曲侧锚喷支护力学状态与直侧有明显不同。为了合理确定巷道弯曲侧锚喷支护参数,对喷层受力进行分析。将锚喷支护结构简化为固结梁与圆柱耦合的力学模型。为探明圆形巷道(或圆弧段)锚喷支护的力学机理,合理确定锚喷支护参数,对喷混凝土层进行应力分析。将锚喷支护结构简化为固结梁与圆柱体耦合的力学模型,结合摩尔-库仑强度理论,建立了喷混凝土层厚度、喷混凝土强度、锚杆间距、锚杆长度对围岩自承能力影响的力学模型,确定了锚喷支护参数与围岩自承能力的影响规律。研究结果表明:喷混凝土强度与围岩自承能力呈线性关系,喷混凝土厚度与围岩自承能力呈二次函数关系,锚杆间距、锚杆长度与围岩自承能力呈三次函数关系。研究成果对巷道曲线边坡锚喷支护参数的确定具有一定的指导意义。关键词:锚喷支护;筒体;力学模型1引言锚喷支护技术广泛应用于矿山、隧道、地铁等地下工程[1-6]。锚喷支护能最大程度地保持围岩的完整性和稳定性,充分发挥围岩的支护作用,对控制围岩的变形、位移、裂隙发展等起着重要作用[7-10]。国内外已有不少学者对锚喷支护技术进行了研究。李等[11-12]。[11]确定了喷层破坏时中性层的位置,探究了不同支护方式下锚喷支护参数与围岩自承能力的关系,建立了巷道围岩自承能力与锚杆间距、喷层厚度、喷层强度之间的力学模型。温等[12]建立了由系统锚杆支撑的外拱、喷层支撑内拱和钢框架组成的组合拱力学模型。王等[4]在对巷道围岩和喷层应力分析的基础上,建立了喷层厚度、喷层强度、锚杆间距对围岩自承能力影响的力学模型。方等[5]研究了喷层厚度、喷层强度、锚杆间距对围岩自承能力的影响。 [13] 设计了高预应力强锚喷支护方案,并利用振弦喷浆应力仪对方案实施后喷浆层的应力状态进行监测。吕建军等 [14] 提出了厚软岩巷道全断面锚固的二维半模型,建立了围岩及锚固系统的理论模型,得到了应力释放、锚杆与围岩耦合的分布规律。荆建军等 [15] 研究了预应力锚杆的力学性能
创伤性脑损伤(TBI)施加了重要的经济和社会负担。轻度TBI的诊断和预后,也称为脑震荡,具有挑战性。脑震荡在接触运动员中很常见。在对头部打击后,通常很难确定谁有脑震荡,应该从比赛中扣留谁,如果脑震荡的运动员准备返回领域,并且脑震荡的运动员将发展出障碍后的综合症。在创伤性脑损伤及其水平可能具有预后价值后,可以在脑脊液的流体和血液中检测到生物标志物。尽管进行了重大调查,但在轻度TBI之后,随着时间的推移,血液生物标志物水平的轨迹仍然存在问题。对这些生物标志物的动力学行为进行建模可能是有益的。我们提出了一种基于接受的药代动力学模型的轻度TBI,针对S100B,UCH-L1,NF-L,GFAP和TAU生物标志物水平的单室动力学模型,用于口服药物吸收。我们使用先前发表的研究近似模型参数。由于参数估计是近似的,因此我们进行了不确定性和灵敏度分析。使用每个生物标志物的估计动力学参数,我们将模型应用于UCH-L1,GFAP,TAU和NF-L生物标志物水平的UCH-L1,GFAP,TAU和NF-L生物标志物的可用后生物标志物数据集。我们已经证明了用一个隔室动力学模型在轻度TBI后对血液生物标志物水平进行建模的可行性。需要更多的工作来更好地建立模型参数,并了解模型对这些血液生物标志物在轻度TBI中的诊断使用的含义。
摘要目的 — 本文旨在提出一种新的简化数值模型,该模型基于一个非常紧凑的半经验公式,能够模拟电液伺服阀的流体动力学行为,同时考虑由于阀门几何形状(例如阀芯和套筒之间的流动泄漏)和操作条件(例如可变供应压力或水击)引起的多种影响。 设计/方法/方法 — 所提出的模型通过简化表示来模拟阀门性能,该表示源自基于压力和流量增益的线性化方法,但能够评估边界条件、压力饱和和泄漏评估之间的相互作用。 与其他流体动力学数值模型(详细的基于物理的高精度模型和文献中其他简化模型)相比,对其性能进行了评估。发现 – 尽管由于其简化的公式,所提出的模型仍然存在一些局限性,但它克服了文献中最常见的流体动力学模型的几个典型缺陷,描述了水击和输送压差与阀芯位移的非线性依赖关系。原创性/价值 – 尽管仍然基于简化的公式,降低了计算成本,但所提出的模型引入了一种新的非线性方法,该方法以适当的精度近似压力-流量流体动力学特性
摘要:飞机是一种主要在空中运行的交通工具;然而,它的旅程始于地面,也终于地面。由于飞机的结构复杂,因此需要使用模拟工具来了解和预测其在地面上的运动行为。模拟工具允许调整观察参数,以收集比实际测试更多的数据,并探索飞机及其各个部件与外部物体(如路面缺陷)的相互作用。本综述旨在收集有关如何模拟飞机与交通相关能量收集系统相互作用的信息。本文探讨了概念设计要满足的规格和框架。模拟飞机配置的不同配置导致选择了双质量弹簧阻尼器模型。对于部件,尤其是起落架(一种用于地面运动的可展开元件),还介绍了几种能够平移轮胎的现有模型,从而选择了点接触、Fiala 和统一半经验模型。已验证哪些软件可以解决所提出的模拟问题,例如 SDI-Engineering 的 GearSim 和 MathWorks 的 Matlab/Simulink/Simscape Multibody。
这是以最终形式出版的作品的作者手稿:Chen,C。X.,Carpenter,J。S.,Murphy,T.,Brooks,P。和Fortenberry,J。D.(2020)。吸引青少年和年轻人参与微生物组样本自我收集:成功的策略。护理生物学研究,https://doi.org/10.1177/1099800420979606
增材制造 (AM),也称为 3D 打印,在制造金属部件的各个行业中得到广泛认可。部件的微观结构和性能因打印过程和工艺参数的不同而有很大差异,预测影响结构、性能和缺陷的致病变量有助于控制它们。由于模型在能够正确预测实验观察结果时最有用,因此我们专注于经过充分验证的可用 AM 机械模型。具体而言,我们严格审查了传输现象模型在凝固、残余应力、变形、缺陷形成以及微观结构和性能演变研究中的应用。我们还评估了 AM 模型在理解常用 AM 合金的可打印性和制造功能梯度合金方面的功能。考虑到建模知识方面的差距,确定了未来研究的机会。本综述的独特之处在于,它对借助比例模型、双向模型、基于云的大数据、机器学习和 AM 硬件的数字孪生快速认证 AM 组件进行了实质性讨论。