由于特性的独特组合,包括高硬度,低密度,化学和热稳定性,半导体和高中子吸收,硼碳化物(B 4 C)是涉及极端环境的各种应用的潜在候选者。但是,B 4 C的当前应用由于其低断裂韧性而受到限制。在这项研究中,通过同时利用包括裂纹偏转,桥梁和微裂缝韧性在内的多种韧性机制,使用了具有包括Tib 2晶粒和石墨血小板在内的特征的分层微观结构设计。使用现场辅助烧结技术(快速),制造了具有密度和分层微结构的B 4 C复合材料。以前,使用微缩进在微尺度上测量了制造的B 4 C复合材料的断裂韧性,以提高56%。在这项工作中,B 4 C复合材料的断裂韧性在宏观尺度上是使用四点弯曲方法来表征的,并将其与在微尺度上获得的先前结果进行了比较。还进行了B 4 C-TIB 2复合材料的断裂行为的微力学模型,以评估实验观察到的坚韧机制的贡献。在四点弯曲测试中,B 4 C复合材料与TIB 2粒(约15粒体积)和石墨血小板(〜8.7 vol%)增强的B 4 C复合材料均表现出最高的断裂韧性从2.38到3.65 MPA∙MPA∙MPA∙M1/2。测量值低于使用微缩号获得但保持一般趋势的值。压痕和四点弯曲测试结果之间的差异源自凹痕测试期间高接触载荷触发的复杂变形行为。通过微力学建模,由于B 4 C和TIB 2之间的热膨胀不匹配引起的热残留应力,并且B 4 C-TIB 2边界处的弱相互作用被确定为实验观察到的韧性增强的主要原因。这些结果证明了B 4 C韧性的层次微结构设计的有效性,并可以为B 4 C复合材料的未来设计提供具有优化的微结构的未来设计,以进一步增强断裂韧性。
上下文。Venus的Co 2较厚的大气与电离层共存,该电离层主要是通过太阳能极端紫外线和软X射线光子的大气中性的电离来形成的。尽管进行了广泛的建模工作,但对电子分布的重现得很好,但我们注意到与先前的研究有关的两个主要缺点。生产和库仑相互作用的影响对于揭示金星电离层的结构和组成至关重要。目标。我们首次评估了质子化物种对时代金星电离层结构的作用。我们还评估了离子库仑碰撞的作用,在许多现有模型中被忽略了。方法。专注于预计质子化效果更突出的太阳最小条件,我们为时代的维纳西亚电离层建立了一个详细的一维光化学模型,并结合了50个以上的离子和中性物种(其中17种是质子化的物种),以及最彻底的化学网络。我们包括离子中性和离子库仑碰撞。光电子影响过程是通过两流动力学模型实现的。结果。我们的模型可以很好地重现观察到的电子分布。该模型表明质子化倾向于通过一系列质子转移反应沿着低至高质子相关的质子转移反应来分散电离流到更多的通道中。结论。另外,在高海拔地区,质子化近2倍的质子化可以增强O + 2的分布,在该系数通过O和OH +之间的反应有效产生。我们发现,库仑碰撞不仅直接通过抑制离子扩散,而且通过修饰离子化学来影响顶部的金星电离层。可以根据库仑碰撞的作用来区分两个离子基:一个在高海拔地区优先生产并积聚在顶部离子室中的组,该组应与在低海拔地区优先生产的另一组进行比较,而在上层离子层中则耗尽。质子化和库仑碰撞都对顶部的金星电离层产生了明显的影响,这说明了这项研究和早期计算之间模型离子分布的许多显着差异。
引言 — 对称性是自然界的一个重要方面,在物理学中起着基础性的作用 [1,2]。诺特定理指出,汉密尔顿量的对称性与相关物理系统中的守恒量相对应 [3]。汉密尔顿量的对称性表明存在超选择规则 [4,5]。在量子计算和信息领域,对称性可以指示资源的存在或缺乏 [6],并且它有助于提高变分量子算法的性能 [7-10]。通过消除与守恒量相关的自由度,对称性的识别可以简化计算——这是诺特定理的核心。这使得对称性在物理学中非常有用。量子计算是一个相当年轻的研究领域。量子计算机最初作为图灵机的量子力学模型 [ 11 ] 被提出,其魅力在于有可能超越经典计算机。量子计算机最明显的优势在于其计算背后固有的物理原理,包括叠加和纠缠等非经典特性。随着希尔伯特空间规模的扩大,量子系统的经典模拟很快变得难以处理,需要指数级增长的比特来探索多个量子比特自然占据的状态空间。直观地说,这些计算机的量子力学性质允许以直截了当的方式模拟量子系统(参见 [ 12 ] 及其参考文献)。一个相关的例子是哈密顿模拟 [ 13 ],它引起了该领域的浓厚兴趣 [ 14 – 17 ]。已经做了大量工作来理解如何在量子硬件上模拟这些动态,以便有效地实现它们;然而,据我们所知,目前还没有可以在量子计算机上测试汉密尔顿对称性的算法,尽管以这种方式模拟汉密尔顿量和识别汉密尔顿量的对称性都被认为是至关重要的。在本文中,我们给出了量子算法来测试汉密尔顿量演化是否关于离散有限群的作用对称。该性质通常被称为演化的协方差 [18]。如果演化是对称的,那么汉密尔顿量本身也是对称的,因此我们的算法可以测试汉密尔顿对称性。此外,我们表明,对于具有可有效实现的幺正演化的汉密尔顿量,我们可以在量子计算机上有效地执行我们的第一个测试 [17]。这里的“有效”是指在 100 秒内完成计算所需的时间。
•2024年春季会议。西雅图,华盛顿州。 氧化物中强电子相互作用和转运的精确计算。 •2024年Paul Drude Institute的Grafox研讨会。 柏林,德国。 构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。 •2023材料科学与工程座谈会。 哥伦比亚大学,纽约。 构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。 •2023第35届电子结构方法最新发展的年度研讨会。 Merced,CA。 从第一原理中的电子 - 波相互作用和自旋动力学的进步。 •2023量子铸造研讨会。 加利福尼亚州圣塔芭芭拉加州大学。 电子和自旋动力学的精确第一原理计算:构建量子材料的工具箱。 •2023 Sanibel研讨会:自旋研讨会。 佛罗里达大学,佛罗里达大学。 理论和第一原理对自旋形成相互作用和自旋松弛的计算。 •2023第二量子在材料科学研讨会中。 nist,美国(虚拟)。 量子材料中电子和自旋动力学的第一原理计算的进步。 •2023年APS 3月会议。 拉斯维加斯,内华达州。 理论和第一原理对自旋形成相互作用和自旋松弛的计算。 •2023 SIAM计算科学与工程会议。 阿姆斯特丹,荷兰。 坎昆,墨西哥。西雅图,华盛顿州。氧化物中强电子相互作用和转运的精确计算。•2024年Paul Drude Institute的Grafox研讨会。柏林,德国。构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。•2023材料科学与工程座谈会。哥伦比亚大学,纽约。构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。•2023第35届电子结构方法最新发展的年度研讨会。Merced,CA。从第一原理中的电子 - 波相互作用和自旋动力学的进步。•2023量子铸造研讨会。加利福尼亚州圣塔芭芭拉加州大学。电子和自旋动力学的精确第一原理计算:构建量子材料的工具箱。•2023 Sanibel研讨会:自旋研讨会。佛罗里达大学,佛罗里达大学。理论和第一原理对自旋形成相互作用和自旋松弛的计算。•2023第二量子在材料科学研讨会中。nist,美国(虚拟)。量子材料中电子和自旋动力学的第一原理计算的进步。•2023年APS 3月会议。拉斯维加斯,内华达州。理论和第一原理对自旋形成相互作用和自旋松弛的计算。•2023 SIAM计算科学与工程会议。阿姆斯特丹,荷兰。坎昆,墨西哥。相互作用的电子,声子和激子的非平衡动力学来自第一原理。•2023第五功能氧化物薄膜会议。第一原理计算复杂氧化物中强电子相互作用。•2022维也纳量子研讨会讲座。维也纳,奥地利。 精确和简约的计算量子物理学:从材料中的电子到量子电路。 •2022第23个亚洲第一原理电子结构计算的研讨会(全体会议)。 虚拟。 第一原理电子 - phonon相互作用的边界:弱到弱的,相关,跨性和数据驱动。 •2022苏黎世ETH苏黎世关于固体缺陷第一原理建模的研讨会。 苏黎世,瑞士。 预测由极性和缺陷控制的电子相互作用和运输。 •2022 ICTP热传输研讨会。 虚拟。 从第一原理计算电子相互作用和动力学方面的进步。 •2022 IPAM关于量子力学模型降低的研讨会。 美国加利福尼亚州洛杉矶。 精确的量子机械计算,对凝分物质中电子相互作用和动力学的计算。 •2022年春季会议。 檀香山HI,美国。 相互作用的电子,声子和激子的非平衡动力学来自第一原理。 •2022 ACS春季会议。 美国加利福尼亚州圣地亚哥。 量子材料中电子动力学的精确第一原理工具。 •2021年量子材料和设备研讨会,哈佛大学。 虚拟。 虚拟。维也纳,奥地利。精确和简约的计算量子物理学:从材料中的电子到量子电路。•2022第23个亚洲第一原理电子结构计算的研讨会(全体会议)。虚拟。第一原理电子 - phonon相互作用的边界:弱到弱的,相关,跨性和数据驱动。•2022苏黎世ETH苏黎世关于固体缺陷第一原理建模的研讨会。苏黎世,瑞士。预测由极性和缺陷控制的电子相互作用和运输。•2022 ICTP热传输研讨会。虚拟。从第一原理计算电子相互作用和动力学方面的进步。•2022 IPAM关于量子力学模型降低的研讨会。美国加利福尼亚州洛杉矶。 精确的量子机械计算,对凝分物质中电子相互作用和动力学的计算。 •2022年春季会议。 檀香山HI,美国。 相互作用的电子,声子和激子的非平衡动力学来自第一原理。 •2022 ACS春季会议。 美国加利福尼亚州圣地亚哥。 量子材料中电子动力学的精确第一原理工具。 •2021年量子材料和设备研讨会,哈佛大学。 虚拟。 虚拟。美国加利福尼亚州洛杉矶。精确的量子机械计算,对凝分物质中电子相互作用和动力学的计算。•2022年春季会议。檀香山HI,美国。相互作用的电子,声子和激子的非平衡动力学来自第一原理。•2022 ACS春季会议。美国加利福尼亚州圣地亚哥。 量子材料中电子动力学的精确第一原理工具。 •2021年量子材料和设备研讨会,哈佛大学。 虚拟。 虚拟。美国加利福尼亚州圣地亚哥。量子材料中电子动力学的精确第一原理工具。•2021年量子材料和设备研讨会,哈佛大学。虚拟。虚拟。量子材料中电子动力学的新型计算工具。•2021夫人春季会议。使用新型原理计算方法中的过渡金属氧化物中的电荷传输。•2021年APS 3月会议。虚拟。第一原理的耦合电子,声子和激子的超快动力学。•2021 Photon Science研讨会,SLAC / Stanford。虚拟。第一原理的耦合电子,声子和激子的超快动力学。•2021年伯克利激动国家会议,加州大学伯克利分校。虚拟。第一原理的耦合电子,声子和激子的超快动力学。
Krabbe病(KD)是由GALC基因突变引起的溶酶体储存疾病(LSD)。有50多种单遗传LSD,在很大程度上阻碍了儿童的正常发育,并且经常导致过早死亡。目前尚无LSD的治疗方法,可用的治疗通常不足,表演短,并且并非没有合并症或长期副作用。过去30年中,我们对LSD病理学以及治疗方案的理解取得了重大进步。最近根据这些进展开始了两项基于基因治疗的临床试验,NCT04693598和NCT04771416。本评论将讨论我们对KD的了解如何到达今天的位置,重点关注临床研究,以及发现的内容如何证明对其他LSD的治疗有益。