图4在分化的AS3MT敲除和野生型细胞系之间未观察到形态差异:使用10μM视黄酸的细胞系在7天内使用10μM视黄酸和1%FBS在酸蚀刻,层粘连蛋白和多赖氨酸和多赖氨酸覆盖的覆盖物上覆盖,以获取MAP2,以获取MAP2,以获取cytoskeposkemeleckkeletalsmembeletalmarkeral。(a)敲除(KO)或野生型(wt)AS3MT线之间的MAP2 +单元总数没有差异(t检验,T [0.875] = 1.19,p = 0.523)b)kO和WT AS3MT线之间的细胞面积没有差异(T AS3MT test test,t test,T [1.98] [1.98] = 1.198],P。c)KO和WT AS3MT线之间的最长神经突长度没有差异(t检验,t [1.99] = 1.10,p = 0.386)。d)KO和WT AS3MT线之间的总神经突长度没有差异(t检验,t [1.11] = 0.937,p = 0.508)。在两个独立的KO/WT细胞系上进行了三个技术重复,进行了每个实验。条代表每个基因型的两个细胞系的平均值。错误是平均值±SEM
摘要:人类多能干细胞 (hPSC) 衍生的神经元培养物已成为人类大脑电活动的模型。微电极阵列 (MEA) 可测量细胞培养物或组织的细胞外电位变化,并能够记录神经元网络活动。MEA 已应用于人类受试者和 hPSC 衍生的大脑模型。在这里,我们回顾了使用 MEA 对 hPSC 衍生的二维和三维大脑模型进行功能表征的文献,并在生理和病理背景下检查了它们的网络功能。我们还总结了人类大脑的 MEA 结果,并将其与有关 hPSC 衍生大脑模型的 MEA 记录的文献进行比较。MEA 记录显示二维 hPSC 衍生大脑模型中的网络活动与人类大脑相当,并揭示了疾病模型中与病理相关的变化。与二维模型相比,三维 hPSC 衍生模型(例如脑类器官)具有更相关的微环境、组织结构和对更复杂的网络活动进行建模的潜力。hPSC 衍生的大脑模型重现了人类大脑网络功能的许多方面并提供了有效的疾病模型,但这些方法需要分化方法、生物工程和可用的 MEA 技术方面的某些进步才能充分发挥其潜力。
增强子产生双向非编码增强子RNA(ERNAS),可能调节基因表达。目前,ERNA函数仍然神秘。在这里,我们报告了一个5'上限的反义ERNA珍珠(与R-Loop组相关的PCDH ERNA),该珍珠从原始粘蛋白(PCDH)αHS5-1增强子区域转录。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA和CRISPRA以及锁定的核酸策略以及CHIRP,MEDIP,DRIP,QHR-4C和HICHIP实验,我们建立了PCDH lo loble(pcdh loble),通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。 尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。 这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。
摘要 – 挪威鲑鱼的红色肉色是一个重要的标志,通常与鱼片的品质有关。颜色强度主要由饮食成分控制,主要是由于红色色素虾青素,它从中肠的饲料中吸收并通过血液输送到肌肉。这种色素具有脂溶性,与脂质运输密切相关。然而,肉的颜色也受基因控制,并且是鲑鱼养殖计划中的一个重要因素。作为正在进行的 GENEinnovate 项目的一部分,研究人员对大西洋鲑鱼中的三种不同基因进行了 CRISPR-Cas9 介导的敲除。其中一个基因 abcg2b 是本论文的重点。已知 abcg2b 的活性会对大西洋鲑鱼肉的颜色产生负面影响。然而,abcg2b 在鲑鱼肉颜色中的具体功能作用尚不清楚。由于 abcg2b 产生膜转运蛋白,预计该蛋白质会将虾青素从中肠的肠细胞输出回肠腔。在本论文中,我们使用荧光显微镜比较了abcg2b敲除鲑鱼和野生型鲑鱼中肠肠细胞的脂质含量。图像显示,与同龄野生型鲑鱼的肠绒毛相比,abcg2b 敲除鲑鱼的肠绒毛中脂质含量明显增加。敲除肠绒毛中平均脂质覆盖率和标准化脂滴数量比野生型高出两倍多。这强化了 abcg2b 将脂质从肠细胞输出回肠腔的假设。虾青素很可能通过abcg2b与脂质一起运输,导致abcg2b活性高的鲑鱼血液中虾青素浓度较低,肉色较浅。
在本研究中,我们提出了一种多功能的表面工程策略,即将贻贝粘附肽模拟和生物正交点击化学相结合。本研究的主要思想源自一种新型受贻贝启发的肽模拟物,其具有可生物点击的叠氮基(即多巴胺 4-叠氮化物)。与贻贝足蛋白的粘附机制(即共价/非共价共介导的表面粘附)类似,受生物启发和可生物点击的肽模拟物多巴胺 4-叠氮化物能够与多种材料稳定结合,例如金属、无机和有机聚合物基材。除了材料通用性之外,多巴胺 4-叠氮化物的叠氮残基还能够通过第二步中的生物正交点击反应与二苄基环辛炔 (DBCO-) 修饰的生物活性配体进行特定结合。为了证明该策略适用于多样化的生物功能化,我们在不同的基底上将几种典型的生物活性分子与 DBCO 功能化进行生物正交结合,以制造满足生物医学植入物基本要求的功能表面。例如,通过分别嫁接防污聚合物、抗菌肽和 NO 生成催化剂,可以轻松将抗生物污损、抗菌和抗血栓形成特性应用于相关的生物材料表面。总体而言,这种新型表面生物工程策略已显示出对基底材料类型和预期生物功能的广泛适用性。可以想象,生物正交化学的“清洁”分子修饰和受贻贝启发的表面粘附的普遍性可以协同为各种生物医学材料提供一种多功能的表面生物工程策略。
.r 组件 ...... .......... ......... aa..a,.......................,.......... 认知组件 .................................................................... 14 变量差异 .............................................................. 19 选择作为控制变量 ...................................................... 43 研究目的 .................................................................... 57