16 摘要 该项目经历了与开发 Sealift 改装船的结构要求/影响相关的典型程序:1) 确定 Sealift 船的有效载荷要求和代表性军用车辆有效载荷,2) 确定可用于改装的候选船只并为改装研究做出最终选择,3) 制定车辆装载的初步安排,即安排有效载荷以确保选定的船只可以容纳车辆,4) 确定结构载荷(整体、局部和车辆相关),以适应改装,5) 确定适应新载荷所需的结构修改,6) 制定成本估算以适应结构修改,包括增加车辆系留装置。该项目的本质是比较 ABS 高速舰艇标准和 DNV 高速、轻型舰艇和海军水面舰艇标准的结构要求和由此产生的修改。报告中对整体载荷、二次撞击载荷和车辆甲板载荷进行了全面比较,并提出了抵抗这些载荷的结构要求。报告还总结了为研究军用有效载荷对车辆甲板结构的影响而开展的有限元分析工作。这尤其令人感兴趣,因为许多车辆的标称轮胎印迹明显大于加强筋间距,这违反了受车轮载荷影响的板结构设计的典型假设。
摘要:从原始传感器数据中提取的诊断潜力健康指标 (HI) 是数据驱动的复合结构诊断和预测的重要特征。本文研究了从使用光纤布拉格光栅 (FBG) 和声发射 (AE) 数据获取的应变中开发的新损伤敏感特征是否适合用作 HI。对单条复合板进行了两次疲劳试验。在以冲击损伤或人工脱粘的形式引入初始损伤后,对面板进行恒定和可变振幅压缩-压缩疲劳试验。通过 FBG 和 AE 进行应变感应是两种有前途的结构健康监测 (SHM) 技术,用于监测损伤增长,并通过相控阵超声进一步验证。几个 FBG 被纳入特殊的 SMARTapes TM 中,这些 SMARTapes TM 沿着加强筋的脚粘合以测量应变场,而 AE 传感器则策略性地放置在面板的外皮上以记录声发射活动。从 FBG 和 AE 原始数据中提取了几种 HI,它们的行为有望用于复合材料结构在使用过程中的损伤监测。为了进一步评估 HI 的行为和适用性,在整个实验过程中使用相控阵相机在多个时间点进行测量,从而提供基于超声波的损伤评估。
产品描述 A-15 钢质舱壁(两侧防火)- FireMaster Marine Plus 毯 25 毫米 x 64 千克/立方米,由结构钢舱壁组成,舱壁隔热层采用单层 25 毫米厚的 FireMaster Marine Plus 毯(由 Thermal Ceramics 制造,密度为 64 千克/立方米)覆盖,覆盖在加强筋上。加强筋也用相同的毯子包裹。使用焊接在舱壁上的镀铜低碳钢销(直径 3 毫米/通常长度在 40 到 50 毫米之间)和 38 毫米摩擦配合垫圈将毯子固定到位。安装销的最大间距为 350 毫米。在接头处,毯子应该被压缩。毯子之间的接头可以放置在距离锚销的最大 350 毫米处,跨越毯子的宽度,以及距离锚销的最大 250 毫米处,其中毯子的长度连接在一起。安装将根据制造商的防火系统信息(参考编号 FM MS 01 PW 和编号 FM 4.103)进行。产品可以在以下场所制造: - 摩根凯龙(荆门)热陶瓷有限公司,中国荆门。 - 摩根热陶瓷(上海)有限公司,中国上海。 - Thermal Ceramics de France SA,法国 Saint-Marcellin-en-Forez。 - Murugappa Morgan Thermal Ceramics Ltd.,印度甘地讷格尔区。 - Murugappa Morgan Thermal Ceramics Ltd,印度拉尼佩特。 - Morgan Thermal Ceramics Korea,韩国大邱。 - Grupo Industrial Morgan SA de CV,墨西哥帕丘卡德索托。 - Morgan Advanced Materials Industries Ltd,阿拉伯联合酋长国阿布扎比。 - Thermal Ceramics, Inc.,美国奥古斯塔。应用/限制 获准用作 A-15 级防火分区。一般应用:任一侧均有火灾危险 根据相关规则要求时,所使用的任何表面材料都必须通过防烟、防毒以及低火焰蔓延特性(IMO 2010 FTP 规则附件 1 第 2 和第 5 部分)的批准。 每件产品都应附带安装和维护手册。 型式认可文件 按照 DNV-CP-0338 船级社计划认证,2021 年 9 月。 测试报告编号 FT12073,日期为 2012 年 4 月 5 日,由中国上海远东防火测试中心出具。 热陶瓷防火系统信息,参考编号 FM MS 01 PW,Rev.9 和编号 FM 4.103 Rev.1。 进行的测试 根据 IMO FTP 规则第 3 部分(IMO Res. A.754(18))进行测试,并符合 IMO 2010 FTP 规则 Ch。 8. 产品标记 产品或包装上应标明制造商名称、型号和消防技术等级。 加拿大运输部批准 根据加拿大运输部出版物《救生设备、消防安全系统、设备和产品批准程序 (TP14612)》中规定的程序,DNV 确认本证书中列出的产品符合加拿大运输部的要求。定期评估 DNV 的检验员应被授权在本证书有效期内的任何时间以及至少每两年进行一次定期评估。该安排应符合船级社计划 DNV-CP-0338 第 4 节中所述的程序。
表1 日本海事协会结构强度规范主要修订内容 时间 修订内容 1921 颁布《钢质船舶检验建造规范》第一版。 1949 日本海事协会(二战后由帝国海事协会更名)首次颁布《钢质船舶检验建造规范》。 1959 引入考虑砰击载荷的要求。 1961 引入基于理论公式的船壳板要求。 1963 引入桁架腹板的屈曲强度要求。 1972 引入基于长期预测的纵向弯矩。 1973 增设第31章“散货船”。(引入等效板格结构评估) 1974 将结构要求重新组织到《钢质船舶检验建造规范》C部分。引入基于直接强度计算的强度评估方法。 1980 使用基于长期预测的波浪压力进行大量修订。 1983 创建新的第 32 章“集装箱船”。 1987 部分纳入 UR S11(总纵强度)。 1989 引入组合载荷下的屈曲要求。 1993 创建新的第 29A 章“双壳油船”。 (引入纵向加强筋的疲劳强度要求) 1999 引入散货船安全相关要求。 (引入进水等情况下的强度要求) 2001 发布《油船结构指南》。 (引入净尺寸评估、等效设计波法、梁疲劳强度评估、极限船体梁强度评估) 2006 创建新的 CSR-B 和 CSR-T 部分。 2016 创建新的 CSR-B&T 部分。大幅修订集装箱船的要求。(引入考虑摇晃载荷的要求)
表1 NK结构强度规范主要修订内容 时间 修订内容 1921 颁布《钢质船舶检验建造规范》第一版。1949 日本海事协会(二战后由帝国海事协会更名)首次颁布《钢质船舶检验建造规范》。1959 引入考虑砰击载荷的要求。1961 引入基于理论公式的船壳板要求。1963 引入桁材腹板的屈曲强度要求。1972 引入基于长期预测的纵向弯矩。1973 创建新的第31章“散货船”。 (引入等效板格结构评估) 1974 将结构要求重新组织到《钢质船舶检验和建造规则》的 C 部分。引入基于直接强度计算的强度评估方法。1980 使用基于长期预测的波浪压力进行大量修订。1983 创建新的第 32 章“集装箱船”。 1987 部分纳入 UR S11(纵向强度)。1989 引入组合载荷下的屈曲要求。1993 创建新的第 29A 章“双壳油船”。 (引入纵向加强筋的疲劳强度要求) 1999 引入散货船安全相关要求。(引入洪水等情况下的强度要求)2001 年发布《油轮结构指南》。(引入净尺寸评估、等效设计波方法、梁的疲劳强度评估、极限船体梁强度评估) 2006 年创建新的 CSR-B 和 CSR-T 部分。 2016 年创建新的 CSR-B&T 部分。大幅修订集装箱船的要求。(引入考虑鞭打载荷的要求)
15.补充说明由船舶结构委员会赞助。由其成员机构 16 共同资助。摘要 使用有限元和封闭式方法分析了焊接铝加固板,以确定焊接导致的强度降低。目前商业和军事对大型高速船舶的兴趣导致了铝制单体船、双体船和三体船的发展。在这些船舶的设计中,尽量减少轻型船舶的重量,从而减少结构重量,具有重要意义。焊接铝会导致焊缝周围区域的材料性能发生重大变化。5xxx 系列和 6xxx 系列合金的强度很大一部分来自冷加工或热加工,这些工艺受到焊接热输入的影响。焊接过程中受热影响的区域称为热影响区或 HAZ。对于通过熔焊连接的高强度 5xxx 和 6xxx 系列合金,HAZ 通常比母材弱 30% 到 50%。铝中 HAZ 强度下降 30% 到 50% 尚未得到充分研究。当前的设计方法假设所有金属都会具有这种降低的强度,而局部弱化已被证明对压缩和拉伸的整体强度影响较小。这种方法可能会严重低估焊接结构的强度,并可能对最终的容器设计造成重大的重量损失。本研究旨在为修改设计标准提供依据。针对不同的板-加强筋组合以及 AL5083 和 AL6082 开发和分析了细网格有限元模型。使用了非线性应力-应变曲线。使用以下属性执行非线性有限元分析:a)。母材,b)。HAZ,c)。母材和 HAZ(延伸 3 倍板厚)。针对拉伸、压缩和弯曲载荷分析了这些模型。对于这三种情况中的每一种,都制定了极限状态标准来比较结果。
15.补充说明由船舶结构委员会赞助。由其成员机构 16 共同资助。摘要 最近的大型铝高速船已经利用定制挤压件有效地建造大型扁平结构,包括内部甲板、湿甲板和侧壳部件。在本报告中,研究了设计和优化此类挤压件以尽量减少结构重量的一般方法。回顾了铝板和面板在平面内和平面外载荷下的强度方法,并将其与公开文献中发表的可用实验测试数据进行了比较。对于铝板和面板的平面内抗压强度,通常发现良好的一致性。然而,目前用于评估板材部件上的平面外载荷以及在组合载荷下作用的板材和面板的最先进的方法并不那么先进。建议在这些领域开展进一步研究。开发了一种使用遗传算法的多目标优化器;该优化器旨在快速生成帕累托边界,将各种强度水平的最小重量设计联系起来。开发了一种工程方法,用于估计平面内和平面外载荷组合下的任意挤压件的强度,并将其链接到优化器以创建完整的设计方法。该方法用于为三种不同类型的挤压面板(板和加强筋组合、夹层面板和帽形加强面板)开发主车辆甲板和公称高速船上强度甲板位置的面板的帕累托边界。最后,提出了结论和未来研究的建议。总体而言,这三种类型的面板在各种强度范围内都表现良好,但在某些应用中,夹层面板比其他两种面板略重。这种工程强度估计方法和多目标遗传算法优化方法的结合已被证明对于此类挤压件的设计非常实用,在标准台式电脑上,完整帕累托前沿的生成时间仅为几分钟。17.关键词 铝、挤压件、屈曲、极限强度、优化、遗传算法。