弥散加权磁共振成像 (DWI) 常用于诊断急性脑梗塞,因为它能够显示因受损细胞水扩散变化而观察到的细胞毒性水肿。DWI 功能取决于水的微分扩散速率或布朗运动。因此,它常用于神经肿瘤学领域,用于脑肿瘤患者的诊断和随访。弥散受限由表观扩散系数 (ADC) 值较低表示,这与细胞毒性水肿、细胞过多或致密内容物(出血和蛋白质)、细胞数量和细胞核/细胞质比率增加以及大分子积累有关。细胞外空间减少会限制水分子的转移,从而导致恶性肿块中的扩散受限。根据先前的研究,细胞含量高的肿瘤表现出更多的扩散限制和较低的 ADC 值 (11,33)。从 DWI 获得的 ADC 值特别与肿瘤细胞、治疗反应、神经胶质瘤等级和生存期相关(4,21,33)。
摘要 — 早期发现脑转移瘤 (BM) 可能对癌症患者的预后产生积极影响。我们之前开发了一个框架,用于在 T1 加权对比增强 3D 磁共振图像 (T1c) 中检测小 BM(直径小于 15 毫米),以协助医疗专家完成这项时间敏感且高风险的任务。该框架利用专用的卷积神经网络 (CNN),该网络使用标记的 T1c 数据进行训练,其中基本事实 BM 分割由放射科医生提供。本研究旨在通过一种基于嘈杂学生的自训练策略来推进该框架,以利用大量未标记的 T1c 数据(即没有 BM 分割或检测的数据)。因此,该工作 (1) 描述了学生和老师 CNN 架构,(2) 介绍了数据和模型噪声机制,以及 (3) 引入了一种新颖的伪标记策略,考虑到框架学习到的 BM 检测灵敏度。最后,它描述了一种利用这些组件的半监督学习策略。我们使用 217 个标记和 1247 个未标记的 T1c 检查通过 2 倍交叉验证进行了验证。仅使用标记检查的框架在 90% 的 BM 检测灵敏度下产生了 9.23 个假阳性;而使用引入的学习策略的框架在相同灵敏度水平下导致错误检测减少约 9%(即 8.44)。此外,虽然使用 75% 和 50% 标记数据集的实验导致算法性能下降(分别为 12.19 和 13.89 个假阳性),但使用嘈杂的学生训练策略的影响不太明显(分别为 10.79 和 12.37 个假阳性)。
摘要 - 在基于脑电图(EEG)的情感脑 - 计算机界面(ABCIS)中,存在一种共识,即从不同频段和通道中提取的EEG特征在情绪表达中具有不同的能力。此外,脑电图是如此弱和非平稳,很容易导致在不同时间收集的脑电图数据的分布差异;因此,有必要探索跨节情绪识别中的情感激活模式。为了解决这两个问题,我们提出了本文中的自加权半监督分类(SWSC)模型,用于基于联合EEG的基于EEG的跨演奏情绪识别和情感激活模式挖掘,其合并包括:1)使用不同的会话中的标记和不受欢迎的样本,以获得更好的捕获数据特征,以获得更好的捕获数据特征; 2)引入一个自加权变量,以自适应地学习脑电图的重要性; 3)挖掘激活模式,包括基于学识渊博的自加权
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
摘要 — 扩散加权磁共振成像 (DW-MRI) 可用于表征神经组织的微观结构,例如通过纤维追踪以非侵入性方式描绘脑白质连接。高空间分辨率的磁共振成像 (MRI) 将在以更好的方式可视化此类纤维束方面发挥重要作用。然而,获得这种分辨率的图像是以更长的扫描时间为代价的。由于患者的心理和身体状况,较长的扫描时间可能与运动伪影的增加有关。单图像超分辨率 (SISR) 是一种旨在从单个低分辨率 (LR) 输入图像中获得高分辨率 (HR) 细节的技术,通过深度学习实现,是本研究的重点。与插值技术或稀疏编码算法相比,深度学习从大数据集中提取先验知识并从低分辨率对应物中生成优质的 MRI 图像。在这项研究中,提出了一种基于深度学习的超分辨率技术,并已应用于 DW-MRI。 IXI 数据集中的图像已被用作地面实况,并被人工下采样以模拟低分辨率图像。所提出的方法在统计上比基线有显著的改进,并实现了 0.913±0.045 的 SSIM。索引术语 — 超分辨率、深度学习、DWI、DTI、MRI
b'We考虑了确定有向图中的根和全局边缘和顶点连接性(以及计算相应切割)的基本问题。对于具有小整数功能的根(以及全局)边缘连接,我们给出了一种新的随机蒙特卡洛算法,该算法在时间\ xcb \ x9c o n 2中运行。对于根边连接性,这是第一个在密度高图高连续性方向上绑定的\ xe2 \ x84 \ xa6(n 3)时间上改进的算法。我们的结果依赖于采样的简单组合以及显得新颖的稀疏性,并且可能导致有向图连接问题的进一步权衡。我们将边缘连接想法扩展到有向图中的根和全局顶点连接。我们获得了\ xcb \ x9c o(nw/\ xcf \ xb5)中的根顶点连接的(1 + \ xcf \ xb5) - approximation,其中w是w是总顶点的重量的时间(假设Integral verterx werges flovex wevertex weivers apteral vertex weivers witteral wittex weivers w we特别地,这会产生一个\ xcb \ x9c o n 2 /\ xcf \ xb5时间随机算法的未加权图。这转化为\ xcb \ x9c o(\ xce \ xbanw)时间精确算法,其中\ xce \ xba是根的连接。我们以此为基础为全局顶点连接获得类似的范围。我们的结果补充了由于Gabow的工作[8]的1991年边缘连接性工作以及Nanongkai等人的最新工作,因此在低连通性方面的这些问题的已知结果。[23]和Forster等。[6]用于顶点连接。
由于评估标准多重且相互交织,而且未经证实的新技术本身具有不确定性,因此很难评估 NASA 的先进技术项目。传统的多标准决策模型往往忽略了评估过程中的相互依赖性和不确定性。我们提出了一种模糊加权影响非线性量规系统 (WINGS) 来评估肯尼迪航天中心 (KSC) 的先进技术项目。WINGS 方法使用表意因果图来揭示复杂问题中相互交织的标准及其因果关系。模糊集理论是一种有效的方法,它使用模糊逻辑来模拟定义不明确的问题中的不确定性。本研究提出的模糊 WINGS 方法通过识别依赖关系 (影响) 的方向及其强度以及评估标准的强度来揭示评估标准之间的相互依赖关系。模糊判断用于应对未经测试的新技术中的不确定性。传统的 WINGS 方法不考虑解空间中的参考点。为此,我们引入了理想解和最低点解的概念,这是 WINGS 的新概念,根据备选方案与理想解(或最低点解)之间的欧几里得距离对备选方案进行排序。最后,我们提出了一个案例研究,根据六个相互交织的标准和 38 个子标准对 KSC 的十个先进技术项目进行评估,以证明本研究提出的新模糊 WINGS 方法的适用性。
摘要:胶质瘤是最常见的脑肿瘤类型,其等级影响其治疗政策和预后。因此,人们已经研究了基于人工智能的肿瘤分级方法。然而,在大多数研究中,都进行了二维(2D)分析和手动肿瘤区域提取。此外,使用医学图像的深度学习研究在收集图像数据和准备硬件方面遇到困难,从而阻碍了其广泛使用。因此,我们开发了一个 3D 卷积神经网络 (3D CNN) 流水线,通过使用 NVIDIA 提供的预训练 Clara 分割模型和我们原始的分类模型,实现全自动胶质瘤分级系统。在该方法中,使用 Clara 分割模型提取脑肿瘤区域,并将使用该提取区域创建的感兴趣体积 (VOI) 分配给分级 3D CNN 并分类为 II、III 或 IV 级。通过使用 46 个区域进行评估,所有肿瘤的分级准确率为 91.3%,与使用多序列的方法相当。提出的流水线方案可以通过结合预训练的 3D CNN 和我们原来的 3D CNN 在单个序列中创建全自动胶质瘤分级流水线。
摘要。在2005年至2019年期间,世界各地对世界各地进行的能源消耗分析表明,能源消耗的增长仅在每年增加,需要一定的节能措施。最大的能源消耗是在建筑业中,即与大城市城市化有关的住宅建筑。能源消耗不仅取决于温度和照明控制系统的能源效率,还取决于其运营的建筑物的效率。基于此,考虑到有条件地分为“旧公寓楼”和“新公寓楼”(取决于建筑时期)的Voronezh市的住房库存。多区域建筑物。根据获得的数据,分别对旧公寓楼和新公寓楼的能源消耗进行了统计分析。在研究的基础上,在使用加权定向的无环图计划进行大量维修(AB)时,提出了算法进行节能措施引入。
