利用通过CUBO获得的地下数据,我们研究了Doublet井系统的技术可行性和设计要求,其水平侧向连接到通过液压分裂创建的断裂网络。EGS储层的尺寸尺寸为在15年寿命中连续加热的范围内提供标称的热量输出,而热水量有限。我们将Gringarten多个平行断裂模型,Cornell离散裂缝模拟器FoxFem和商用模拟器ResFRAC应用于估算所需的传热区域,并设计潜在的液压刺激处理。储层模拟表明,根据流体流量和注入温度,有效断裂传热区的2至3 km 2在15年内提供了5至10 mW的目标热量输出。
1 新 TOU 客户可能有资格享受前 12 个月的账单保护。这意味着,如果您前 12 个月的 TOU 费率支付额高于之前的分级费率,您将获得差额的一次性账单信用额度。2 TOU 费率提供季节性定价,冬季从 10 月到 5 月,夏季从 6 月到 9 月。3 可降低总电费的折扣。基准信用额度按使用的每千瓦时 (kWh) 计算,并以每月基准分配额为上限。4 适用于电动汽车车主和承租人、拥有储能系统的客户或拥有用于水或空间加热的电动热泵系统的客户的费率。
反应堆系统不仅旨在加热产品,还为分析微波效应。典型的单座腔意味着平行电场分布,在圆柱瓶中符合样品。该配置即使对于具有低吸收特性的材料,微波和样品之间的最大相互作用也提供了最大的相互作用。对于高吸收的样品,我们已经开发了垂直的电场分布。该溶液可以解决微波在高吸收材料体积中的低渗透问题,从而促进了有效且均匀的加热。平行和垂直电场分布之间的开关扩展了适用于可控和容积微波加热的化合物列表,与大多数产品匹配。m icro c hem s反应堆 - 25 m l倾斜腔
批次煮培根,在5至6分钟的大锅中或直至酥脆。从锅中取出,保留2汤匙滴。在纸巾上排放培根。将洋葱,胡萝卜,芹菜和盐添加到保留的滴;炒5分钟或直到嫩。加入大蒜和百里香;煮1分钟。搅拌肉汤;烧开。加入豆子,减少热量,然后煮5分钟。将汤匙汤倒入4份碗中;每份食物上碎培根。注意:要在单独的容器中服用汤和培根。高2分钟或直至彻底加热的微波汤;食用前撒上培根。---------------------------------------------------------------------------------------------------------------------------------------------------------------------》预热肉鸡。在面包上撒上奶酪;烤2至3分钟,或直到奶酪融化并开始变成褐色。与汤一起食用。
目的。利用现有的最佳等离子体诊断技术研究第 24 个太阳周期内平静太阳区域的纳米耀斑,以推导出它们在不同太阳活动水平下的能量分布和对日冕加热的贡献。方法。使用了太阳动力学观测站 (SDO) 上的大气成像组件 (AIA) 的极紫外滤光片。我们分析了 2011 年至 2018 年之间的 30 个 AIA / SDO 图像系列,每个图像系列以 12 秒的节奏覆盖了 400 ″ × 400 ″ 的平静太阳视野,持续超过两小时。使用差异发射测量 (DEM) 分析来推导每个像素的发射测量 (EM) 和温度演变。我们使用基于阈值的算法将纳米耀斑检测为 EM 增强,并从 DEM 观测中推导出它们的热能。结果。纳米耀斑能量分布遵循幂律,其陡度略有变化(α=2.02-2.47),但与太阳活动水平无关。所有数据集的综合纳米耀斑分布涵盖了事件能量的五个数量级(1024-1029尔格),幂律指数α=2.28±0.03。导出的平均能量通量为(3.7±1.6)×104尔格cm-2s-1,比日冕加热要求小一个数量级。我们发现导出的能量通量与太阳活动之间没有相关性。对空间分布的分析揭示了高能量通量(高达3×105尔格cm-2s-1)簇,周围是活动性较低的延伸区域。与来自日震和磁成像仪的磁图的比较表明,高活动性星团优先位于磁网络中和增强磁通密度区域上方。结论。陡峭的幂律斜率(α> 2)表明耀斑能量分布中的总能量由最小事件(即纳米耀斑)主导。我们证明,在宁静太阳中,纳米耀斑分布及其对日冕加热的贡献不会随太阳周期而变化。