●随机森林:一种合奏学习算法,该算法构建了多个决策树并结合了输出以提高准确性并减少过度效果。●XGBoost:像随机森林一样,XGBoost是一种集合学习算法,但它使用梯度提升来依次构建决策树,在每个步骤上纠正错误,以提高准确性和效率。●KNN:一种基于实例的学习算法,该算法基于其K最近的K最近邻居的多数类或通过平均值来预测值。●XGBlend:我们创建的XGBoost模型!将标准神经网络与XGBoost体系结构相结合,以提高算法处理的速度。●1D-CNN:使用卷积层将每一行视为1D序列的卷积神经网络,以捕获特征相互作用并提取图案,以提高预测性能。●TABNET:专为表格数据而设计的深度学习模型,利用注意机制动态选择相关特征,从而实现可解释性和有效的学习。
数据重播是图像的成功增量学习技术。它通过保留原始或合成的先前数据的储存库来防止灾难性的遗忘,以确保模型在适应新颖概念的同时保留过去的知识。但是,它在视频域中的应用是基本的,因为它只是存储了框架以进行动作识别。本文首次探讨了视频数据重播技术的递增动作分割,重点是动作时间段。我们提出了一个时间连贯的动作(TCA)模型,该模型代表使用生成模型而不是存储单个帧的动作。捕获时间连贯性的调节变量的集成使我们的模型了解随着时间的流逝的作用进化。因此,TCA为重播产生的动作段是多种多样的,并且在时间上是连贯的。在早餐数据集上的10任任务增量设置中,与基准相比,我们的AP可以显着提高准确性高达22%。
当蜜蜂暴露于农药时,发病机理可能会增加,从而阐明导致CCD的不同风险因素的相互作用的影响。免疫途径的任何变化都可能影响生物体抵抗病原体和疾病的能力。实际上,发现米巴多利降低了蜜蜂中免疫相关基因的表达(7),并且在暴露于伊迪克氯酸的蜜蜂中也可以观察到Nosema孢子的产生增加(8)。暴露于Ceranae和Neonicotinoid,Thiamethoxam,导致蜜蜂肠道微生物群营养不良(9)。其他考虑与Nosema共同暴露于肠道微生物群的研究的研究(10,11)。这强烈表明农药与病原体暴露与其相互作用的协同作用之间存在关系。此外,Nosema感染改变了Honeybee
在本文中,我们提出了 Skip-Plan,一种用于教学视频中程序规划的压缩动作空间学习方法。当前的程序规划方法都遵循每个时间步的状态-动作对预测并相邻地生成动作。虽然它符合人类的直觉,但这种方法始终难以应对高维状态监督和动作序列的错误积累。在这项工作中,我们将程序规划问题抽象为数学链模型。通过跳过动作链中不确定的节点和边,我们以两种方式将长而复杂的序列函数转换为短而可靠的序列函数。首先,我们跳过所有中间状态监督,只关注动作预测。其次,我们通过跳过不可靠的中间动作将相对较长的链分解为多个短的子链。通过这种方式,我们的模型在压缩动作空间中探索动作序列内各种可靠的子关系。大量实验表明,Skip-Plan 在程序规划的 CrossTask 和 COIN 基准测试中实现了最先进的性能。
摘要冠状病毒疾病(Covid-19)是最近发现的冠状病毒引起的一种传染病。该病于2019年底首次在中国武汉报道,已导致171万人全球死亡,感染超过7700万。疾病的常见症状包括发烧,干咳嗽和疲劳。本文献综述旨在总结以下主题:审查对9次COVID-19疫苗进行的临床试验,并通过疫苗临床开发过程的三个阶段进行疗效和作用方式。分析通过三个试验遵循单个疫苗,检查和分析了提取的结果,以确定其含有严重的急性呼吸综合征(SARS-COV-2)的能力。四种COVID-19疫苗已被批准用于世界各地,许多其他疫苗都在临床试验1、2和3中使用。总而言之,在临床试验中,这些疫苗在不久的将来为与Covid-19作斗争提供了巨大的希望。
全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
- 建立北爱尔兰所有蓝色碳栖息地的基线清单:其范围,局部测量碳固存率(CSR)并估计了按栖息地估计的总碳存储,包括了解栖息地的状况如何影响CSR。- 本蓝色碳报告中的地面真相估计的范围和栖息地适用性区域,指的是行动1.4,并确定每个地点的栖息地状况以及任何显着的当地压力。- 研究蓝色碳栖息地对气候变化和其他压力的可能反应,尤其是那些目前是实际恢复重点的沿海栖息地。- 了解和评估恢复的共同利益,例如生物多样性增长,增强其他生态系统服务,例如防洪,水质改善,旅游业和社区买入/所有权。- 进食北爱尔兰适应计划,气候行动计划和NI环境计划/环境改进计划(EIP)/生物多样性战略,本地
年龄(年)71.7±10.8性别(女性 /男性)%8(40%) /12(60%)MAS-ul 1.25(0-6)FMA-UL 51(29-66)脂肪5(1-5)MBI 94(1-5)MBI 94(46-100)平均±标准偏差; n(%);中值(最小值最小)。修改后的Ashworth Scale-upper肢体(MAS-ul); FUGL-MEYER评估 - Upper肢体(FMA-ul);法式手臂测试(FAT);和修改的Barthel指数(MBI)。