摘要:鉴于可食用昆虫部门的工业生产的新颖性,研究主要集中于黑人士兵幼虫(BSFL)的动态性能,以响应不同的基板和饲养条件作为基础,以优化产量和质量。最近,研究已开始更多地关注幼虫消化系统及其底物的相关微生物,以及操纵这些群落对昆虫性能的组成的影响,作为微生物组工程的一种形式。在这里,我们介绍了有关在BSFL饲养过程中使用微生物的现有文献的概述,以优化该昆虫的生产力。这些研究具有可变的结果,并提供了对这种差异的潜在解释,以激发未来的研究,这可能会导致BSFL中微生物组工程的成功率更好。
美国宇航局德莱顿飞行研究中心在尖头楔形飞行器上开发了一种齐平空气数据传感 (FADS) 系统。本文详细介绍了一种实时攻角估计方案的设计和校准,该方案旨在满足配备超音速燃烧冲压式喷气发动机的研究飞行器的机载空气数据测量要求。FADS 系统设计用于在 3-8 马赫和 –6°-12° 攻角的飞行中运行。FADS 架构的描述包括端口布局、气动设计和硬件集成。将静态和动态性能的预测模型与马赫和攻角范围内的风洞结果进行了比较。结果表明,静态攻角精度和气动滞后可以充分表征并纳入实时算法。
长寿命自主便携式和可穿戴设备越来越多地出现 [1-8],对系统小型化和降低功耗的要求使高效电源管理单元 (PMU) 的设计成为首要问题,其中低压差 (LDO) 稳压器发挥着关键作用 [9-13]。如图 1 所示,在电池供电系统中,在电池电压和偏置特定系统模块所需的负载电流发生大幅变化的情况下,LDO 会从电池电压 V BAT 产生稳定、低噪声和精确的电源电压 V out ,通常会使用多个 LDO 来优化每个模块的功耗,从而优化整体电源效率。传统 LDO 依靠位于输出节点的外部 µ F 电容来保证稳定性,同时尽量减少瞬态工作下 V out 的变化 [14-16]。尽管如此,系统功率和尺寸的降低正导致完整的片上系统 (SoC) 设备的发展,其中所有组件都需要完全集成。实施低成本片上系统解决方案的一个关键条件是与互补金属氧化物半导体 (CMOS) 技术的兼容性。这反过来又与低压合规性有关,因为随着 CMOS 技术的缩小,电源电压也会缩小,非常接近 MOS 晶体管的阈值电压,因此在设计这种低压电路时必须遵循新策略。因此,无 CMOS 电容器低压差稳压器的设计已成为一个有前途的研究课题,需要低压架构和替代的片上补偿技术,以保持系统在整个工作范围内的稳定性,同时保持调节性能。此外,便携式设备的一个关键参数是功耗,因为它决定了电池寿命。这意味着使用低静态电流 I q 。然而,降低 Iq 会降低动态性能:最大输出电流受到限制,从而限制了诸如转换速率和稳定时间等参数。这就需要引入瞬态增强电路技术来平衡动态性能,同时将对功率效率和电路复杂性的影响降至最低。
功能梯度材料 (FGM) 是一种先进的复合材料,其材料特性在多个方向上呈现逐渐过渡,通过在整个结构中策略性地改变材料成分,可以提高性能。这种逐渐变化可以增强转子的结构耐久性、耐热性和减振性等,使 FGM 在航空航天、汽车和工业机械等高性能应用中具有优势。尽管有这些好处,但 FGM 的材料特性可能会给准确预测其动态行为带来独特的挑战。本研究旨在开发一种能够捕捉 FGM 转子动态特性的分析模型。该模型将有助于更好地理解 FGM 转子在各种条件下的行为,为优化设计参数以提高动态性能提供见解,并分析转子的不稳定性。
飞机设计需要不同学科的贡献,这些学科通常由飞机开发过程中的不同专业小组代表。在受控飞行系统动力学的设计和评估中,这一点显而易见。具体而言,基本飞行动力学模型包括飞机几何形状和质量的描述以及运动方程和环境影响,例如重力、大气和风/阵风。基本飞行动力学受到空气动力学和推进力的影响,这两个学科涉及其他两个不同的学科。飞行动力学与机载系统相互作用,机载系统可分为激励器、传感器和控件。请注意,激励器由控制面(例如升降舵)和驱动它们的执行器组成。优化飞行动力学和系统之间的相互作用是提高运行效率的一个重要研究领域。例如,控制面可以设计成“恰到好处”的尺寸和动态性能,以尽量减少质量
特点 更高性能和更高灵敏度 当今的许多应用都采用了涉及使用协作机器人的自动化解决方案。机器人和自动化解决方案在克服未来挑战方面发挥着不可或缺的作用,尤其是在工业自动化领域,但也包括物流、医疗技术和农业应用等其他领域。舍弗勒通过集成传感器的精密谐波齿轮创新解决方案支持最终用户不断提高性能并同时用于敏感应用。当在协作机器人的每个关节上使用带传感器的精密谐波齿轮 RT1-T 并与机器人制造商使用控制技术的振动补偿相结合时,该解决方案可支持更好的动态性能。因此,通过主动补偿振动,可以在保持协作机器人定位精度的同时实现更高的速度。
摘要——以可再生能源 (RES) 为主导的电网是未来电力系统的设想基础设施,其中常用的并网变流器电网跟踪 (GFL) 控制存在缺乏电网支持能力、稳定性低等问题。最近,提出了新兴的电网形成 (GFM) 控制方法来改善并网变流器的动态性能和稳定性。本文回顾了现有的并网变流器的 GFM 控制方法,并从控制结构、电网支持能力、故障电流限制和稳定性方面对它们进行了比较。考虑到故障电流限制策略的影响,提供了全面的暂态稳定性分析。此外,本文还探讨了 GFM 变流器的典型应用,例如交流微电网和海上风电场高压直流 (OWF-HVDC) 集成系统。最后,讨论了 GFM 变流器在未来应用中面临的挑战。
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
摘要:目前,在特定而复杂的工业操作中,机器人必须满足某些要求和标准,如高运动学或动态性能、工作空间的特定尺寸或机器人移动元件尺寸的限制。为了满足这些标准,必须对机器人进行适当的设计,这需要多年的实践以及人类设计师的适当知识和经验。为了协助人类设计师进行机器人设计,已经开发了几种方法(包括优化方法)。本文解决的科学问题是开发一种人工智能方法,使用前馈神经网络来估计机器人的工作空间大小和运动学。该方法应用于由基座平台、移动平台和六个运动旋转万向球面开环组成的并联机器人。数值结果表明,通过适当的训练和拓扑结构,前馈神经网络能够根据末端执行器的姿态正确估计工作空间体积值和广义坐标值。
本文介绍了在非参数不确定性(阵风和风扰动)下悬停飞行的垂直起降 (VTOL) 无人机 (UAV) 的滚转运动的最佳滑模控制 (SMC) 和最佳超扭转滑模控制 (STSMC) 的设计。本文对受控滚转运动进行了稳定性分析,并基于 Lyapunov 定理证明了渐近误差收敛。据此,针对受不确定性影响的飞机系统制定了控制律。为了避免在选择设计参数时进行反复试验并提高 SMC 和 STSMC 的性能,建议使用灰狼优化进行调整。基于数值模拟,对最佳和非最佳控制器以及最佳 SMSTC 和最佳 SMC 进行了比较研究,比较了跟踪误差和控制信号中的抖动行为。数值模拟表明,GWO 可以提高 SMC 和 STSMC 的性能。此外,在跟踪误差和控制信号抖动效应方面,最佳 STSMC 比最佳 SMC 具有更好的动态性能。