1。引言一种称为Peste des Petits反刍动物(PPR)的病毒会影响小型反刍动物,主要是绵羊和山羊,但它也会感染家畜。PPR病毒(PPRV)是paramyxoviridae属的菌群的单链,非分段的RNA病毒(1)。PPRV的基因组跨越15,948个核苷酸(NT),并结构为六个开放式阅读帧(ORF)。由这些ORF编码的六种结构蛋白是聚合酶(P)或大蛋白(L),融合蛋白(F),磷酸蛋白(P),基质蛋白(M),黑凝集素蛋白(H)和核蛋白(N)。此外,非结构蛋白C和V由ORF转录单元(2)编码。通过使用部分基因序列的系统发育研究,通过系统发育研究从两种结构蛋白N或F中描述了四个谱系(3)这些PPRV的谱系分布在包括非洲,亚洲和欧洲在内的几个地理区域中(4)。所有四个PPRV谱系都存在于非洲,自1940年以来,西非国家一直局部局部病毒。当前的证据表明,谱系I病毒不再循环,因为自2001年以来就没有发现这种血统(5)。血统II主要出现在西非,尽管最近在刚果民主共和国(DRC)和坦桑尼亚报道了这一点(6)。北部和西部的北部都没有报道谱系III,尽管在科莫罗斯群岛以及东北,东部和中非都可以找到它。非洲最常见的血统IV已在15个不同的国家中记录在第15个国家中。(6)。迄今为止,它已在非洲的北部,西部,中部和东部地区进行了确定,并且正在逐渐向南移动。随着PPRV继续散布在以前未感染的地区,数以千万万的家庭小型反刍动物和野生动植物面临感染的风险。但是,在以前未感染的地区发现的PPRV感染以及被感染的国家的谱系混合物共同强调了PPR的地理和时间动态特征(7)。年度全球经济损失估计,这些损失的年度经济损失约为1.45美元,这些损失的一半,这些损失的一半,这些损失影响了非洲和一季度的ASIA。这些损失是由死亡率造成的,死亡率最高为20%,而发病率达到100%(8,9)。由于对绵羊和山羊农民的高影响力PPR,粮食和农业组织(FAO)和世界动物健康组织(以前称为OIE)已正式启动了一项全球旨在消除PPR的计划。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年6月1日。; https://doi.org/10.1101/2024.06.01.596947 doi:biorxiv Preprint
简介:古团生物学是法医学的一部分,该法医学研究了由微生物引起的疾病的演变,并允许揭示历史学家未知的历史事件。有了这项科学,经过4个世纪后,科学家证明了画家Michelangelo Merisi(1571-1610)死亡的原因。目的:本研究调查了画家卡拉瓦戈奥死亡的原因。方法论:进行了叙事书目审查。该研究是由Marseille的IhuMéditerranee感染进行的一项实验研究,该研究于2018年9月发表。结果:首先,研究人员进行了DNA分析,以证明在托斯卡纳 - 意大利发现的骨骼来自画家。在确认后,通过DNA跟踪,分析了牙髓以跟踪外源性DNA碎片。科学家已将DNA追踪到研究人员对卡拉瓦焦死亡的最常见假设:梅毒,疟疾和地中海发烧。因为它与假设的DNA没有对应关系,因此通过非特异性元基因组方法对DNA进行了分析,然后对特定的定量PCR方法进行了搜索,以搜索金黄色葡萄球菌败血症。揭示了金黄色葡萄球菌的存在,这引起了严重的感染并演变为继发性败血症。结论:实验研究证明了DNA证明卡拉瓦乔死于细菌感染,由抗毒剂金黄色葡萄球菌败血症。古团生物学使我们能够解散并驳斥了关于画家卡拉瓦戈奥死亡的错误假设。此外,尽管在国家领土上是最近且没有那么好的科学,但面对研究微生物的进化线及其对宿主的干扰,古团生物学的相关性仍在揭示。
fi g u r e 5在草食动物粪便中不同模式的真菌群落的功能表征。(a)在营养模式下相对丰度(> 1%)。(b)公会模式下预测的功能分布的组成; (c)在公会模式下对应于功能组的家庭层面上特定主要的真菌分类单元的相对丰度(第一级标题是真菌物种及其所在的类别;次级标题是与真菌相对应的官能团)。不同的字母表示在p <.05级别(n = 6)的显着差异;表S14列出了真菌公会模式下的比较统计结果;表S15列出了确切的p值。
肠道或胃肠道由一个复杂的微生物网络组成。这些微生物统称为肠道微生物群,已被确定为在动物健康中起重要作用,影响了代谢,行为以及动物的整体生理健康和表现。因此,本期特刊的目的是收集科学文章,以强调微生物组数据的使用和重要性,以促进我们对复杂生物系统的理解,例如免疫系统,营养,繁殖,疾病弹性和效率。此问题欢迎跨学科的原始研究和审查肠道菌群解决方案在动物健康中的应用。这可能关注肠道菌群与动物健康之间的关系,尤其是与特定疾病状况和动物生命阶段有关的健康。我们特别欢迎研究涵盖其他微生物群(即更多的整体/整个微生物群),而不仅仅是细菌种群。欢迎对所有农场动物进行研究。
侵入性啮齿动物在全球约90%的岛屿上存在,对地方性和本地岛屿物种构成了严重威胁,并使啮齿动物消除了岛屿保护的核心。空中广播是分散啮齿动物诱饵的首选方法。因此,必须实时生成准确的诱饵密度图,以最大程度地利用空中分散方法来最大化啮齿动物消除运动的效率。传统上,保护主义者依靠地理信息系统(GIS)生成的地面诱饵分散图。但是,这种方法是耗时的,并且基于未经测试的假设。为了提高航空运营的准确性和效率,我们开发了书呆子(啮齿动物密度的数值估计),这是一种执行高度精确计算并立即结果的算法。在其核心上,书呆子是一种概率密度函数,它描述了地面上的诱饵密度,这是啮齿动物桶和直升机速度的孔径直径的函数。我们通过在两个岛屿啮齿动物的消除运动中成功利用模型来证实该模型的有效性:在墨西哥太平洋的圣贝尼托·奥斯特(San Benito Oeste)(400公顷)上消除小鼠,而在墨西哥加勒比海的Banco Chonchorro的Cayo Centro(539 HA)上消除了船只大鼠。值得注意的是,Cayo Centro运动是迄今为止在湿的热带岛屿上进行的最大啮齿动物。我们已经证明了书呆子的效率及其显着降低大规模消除啮齿动物运动的整体成本的潜力。
基于转录的全细胞生物传感器(WCB)是由分析物1响应启动子设计的细胞,驱动记者基因的转录。WCB可以感知并报告与人类健康相关的生物活性分子(分析)。设计对分析物敏感的3启动子需要繁琐的试验方法,通常会导致生物传感器4的性能差。在这里,我们将合成生物学与控制工程集成到5个设计,计算模型,并在6个哺乳动物细胞中实现了高性能生物传感器。与传统方法不同,我们的方法不依赖于优化独立的7个视图组件,例如启动子和转录因子。相反,它使用生物分子8电路来增强生物传感器的性能,尽管固有的组件缺陷。我们通过采用CRISPR-CAS系统来仔细地实现了八个不同的生物传感器,然后进行了数量比较的性能,并确定了一种配置,我们将其命名为11个Casense,从而克服了当前生物传感器的局限性。我们的方法是可以推广的12,并且可以适应任何感兴趣的分析物,其中有一个对分析物敏感的13启动子,使其成为多种应用程序的多功能工具。作为概念证明,我们14培养了细胞内铜的高性能生物传感器,这是因为铜15在人类健康和疾病中发挥作用,并且缺乏能够测量细胞内16铜在活细胞中的技术。19我们工作的重要性在于它在体外和体内对17种监测生物活性分子和化学物质的监测的潜力,在18个地区,例如毒理学,药物发现,疾病诊断和治疗中至关重要。
格里菲斯大学,澳大利亚北森市凯瑟尔路170号,澳大利亚昆士兰州4111,昆士兰微型和纳米技术中心,格里菲斯大学,西克里克路,内森QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚M.Ryrybachuk@griffith.edgriffith.edu.au.au摘要,该文章的摘要是一项摘要,该文章的设计和交付的材料是在设计和交付的材料。或一些先于低级基本材料技术课程,包括新课程和学习。 高级课程实现了基于项目的体验学习方法,并采用了家庭硬件项目的反向材料工程(RME)分析,这些项目用作教学样本。 学习活动围绕着在实际情况下采用RME方法来进一步学习,以进一步学习工程材料在实践环境中的结构,性能和组成,并转化到更高水平的抽象来理解工具材料的实践应用和限制。 此外,基于项目的体验学习活动鼓励学生练习高阶思维,以在涉及现实世界问题的同时参与与学习者相关的项目的情况下获得知识深度。 关键词:材料科学教育,工程教育,逆向工程,基于项目的学习,通过执行学习,STEM教学1。格里菲斯大学,澳大利亚北森市凯瑟尔路170号,澳大利亚昆士兰州4111,昆士兰微型和纳米技术中心,格里菲斯大学,西克里克路,内森QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚M.Ryrybachuk@griffith.edgriffith.edu.au.au摘要,该文章的摘要是一项摘要,该文章的设计和交付的材料是在设计和交付的材料。或一些先于低级基本材料技术课程,包括新课程和学习。 高级课程实现了基于项目的体验学习方法,并采用了家庭硬件项目的反向材料工程(RME)分析,这些项目用作教学样本。 学习活动围绕着在实际情况下采用RME方法来进一步学习,以进一步学习工程材料在实践环境中的结构,性能和组成,并转化到更高水平的抽象来理解工具材料的实践应用和限制。 此外,基于项目的体验学习活动鼓励学生练习高阶思维,以在涉及现实世界问题的同时参与与学习者相关的项目的情况下获得知识深度。 关键词:材料科学教育,工程教育,逆向工程,基于项目的学习,通过执行学习,STEM教学1。格里菲斯大学,澳大利亚北森市凯瑟尔路170号,澳大利亚昆士兰州4111,昆士兰微型和纳米技术中心,格里菲斯大学,西克里克路,内森QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚M.Ryrybachuk@griffith.edgriffith.edu.au.au摘要,该文章的摘要是一项摘要,该文章的设计和交付的材料是在设计和交付的材料。或一些先于低级基本材料技术课程,包括新课程和学习。高级课程实现了基于项目的体验学习方法,并采用了家庭硬件项目的反向材料工程(RME)分析,这些项目用作教学样本。学习活动围绕着在实际情况下采用RME方法来进一步学习,以进一步学习工程材料在实践环境中的结构,性能和组成,并转化到更高水平的抽象来理解工具材料的实践应用和限制。此外,基于项目的体验学习活动鼓励学生练习高阶思维,以在涉及现实世界问题的同时参与与学习者相关的项目的情况下获得知识深度。关键词:材料科学教育,工程教育,逆向工程,基于项目的学习,通过执行学习,STEM教学1。简介现代工程毕业生应理解,分析和提供解决广泛和复杂问题的解决方案 - 并具有参与和行使多学科和系统的方法的能力和能力
协调化学评论,518,(2024),216043。(IF-2024)(2024年7月)Kumar Charu Nanthini,Ramar Thangam,Laxmanan Karthikeyan,Babu Rithisa,P。AbdulRasheed,Sunhong Min,Heemin Kang,Nachimuthu Kannikapuppu
Giulia Zancolli,洛桑大学生态与进化系,瑞士洛桑1015。电子邮件:giulia.zancli@gmail.com; Agostinho Antunes,CIIMAR/CIMAR,海洋与环境研究跨学科中心,Porto de Leix其他Porto de LeixThes Cruise Terminal,AV。 诺顿·德·马托斯将军,S/N,4450-208 Porto,葡萄牙。 电子邮件:aantunes@ciimar.up.pt†第一名合着者。电子邮件:giulia.zancli@gmail.com; Agostinho Antunes,CIIMAR/CIMAR,海洋与环境研究跨学科中心,Porto de Leix其他Porto de LeixThes Cruise Terminal,AV。诺顿·德·马托斯将军,S/N,4450-208 Porto,葡萄牙。电子邮件:aantunes@ciimar.up.pt†第一名合着者。电子邮件:aantunes@ciimar.up.pt†第一名合着者。