以动量守恒为起点,推导出一个多相机械能量平衡方程,该方程考虑了移动控制体积内存在的多个材料相和界面。该平衡应用于固定在三相接触线上的控制体积,该接触线在粗糙且化学均匀且惰性的固体表面上连续前进。使用控制体积内材料行为的半定量模型,进行数量级分析以忽略不重要的项,根据三相接触线周围发生的界面动力学知识,生成一个预测接触角滞后的方程。结果表明,三相接触线“粘滑”运动期间发生的粘性能量耗散是粗糙表面接触角滞后的原因,可以通过中间平衡界面状态的变化来计算。该平衡适用于 Wenzel、Cassie–Baxter 和 Fakir(超疏水)润湿状态,表明对于 Fakir 情况,在界面前进和后退过程中都会发生显著的耗散,并将这些耗散与“粘滑”事件周围发生的界面面积变化联系起来。
我们系统地研究了流体动力学模拟中超子全局极化对碰撞系统初始纵向流速的敏感性。通过在将初始碰撞几何映射到宏观流体动力学场时明确施加局部能量动量守恒,我们研究了系统的轨道角动量 (OAM) 和流体涡度的演变。我们发现,同时描述 ! 超子的全局极化和介子定向流的斜率可以强烈限制流体动力学演化开始时纵向流的大小。我们利用 BNL 相对论重离子对撞机的光束能量扫描程序中的 STAR 测量结果,提取了初始纵向流的大小和产生的夸克胶子等离子体流体中轨道角动量分数与碰撞能量的关系。我们发现在流体动力学演化开始时,中快速度流体中剩余约 100–200 ¯ h OAM。我们进一步研究了不同的流体动力学梯度对 ! 和 ¯ ! 自旋极化的影响。µ B / T 的梯度可以改变 ! 和 ¯ ! 极化之间的排序。
量子态工程是量子光子技术的基石,主要依赖于自发参量下转换和四波混频,其中一个或两个泵浦光子自发衰减为一个光子对。这两种非线性效应都要求参与光子的动量守恒,这严重限制了所得量子态的多功能性。非线性超表面具有亚波长厚度,可以放宽这一限制;当与共振结合时,它们大大扩展了量子态工程的可能性。在这里,我们通过自发参量下转换在具有高品质因数、连续共振中准束缚态的半导体超表面中生成纠缠光子。通过增强量子真空场,我们的超表面在多个窄共振带内和宽光谱范围内增强了非简并纠缠光子的发射。在多个波长下泵浦的同一样品中的单个共振或多个共振可以产生多频量子态,包括簇态。这些特征表明超表面是量子信息的复杂状态的多功能来源。O
摘要 近几年来,人们对用于太空应用的多功能可重构阵列的兴趣日益浓厚,并提出了几种针对不同任务需求的概念。然而,尚未找到一个引人注目的应用来证明其相对于传统系统更高的成本和复杂性是合理的。本文提出了一种用于小型可重构航天器的姿态控制系统 (ACS) 的设计新方法。它将利用多体阵列模块相对于彼此旋转产生的动量守恒内部扭矩。目标是相对于最先进的 ACS 实现更好的效率、准确性和稳健性性能,这是小型航天器技术的瓶颈。本文研究了使用内部关节扭矩控制姿态的平面多体阵列的特征行为。为此,将展示和讨论相关的重新定向轨迹。参照该领域的先前研究,讨论了考虑模块撞击的最佳姿态控制轨迹,并从物理和数学角度详细解释了动量保持机动的动力学。结果表明,该概念有待进一步发展。
摘要。本文简要回顾了卫星和航天器的电力推进技术。电力推进器,也称为离子推进器或等离子推进器,与化学推进器相比,其推力较低,但由于能量与推进剂分离,因此可以实现较大的能量密度,因此在太空推进方面具有显著优势。尽管电力推进器的发展可以追溯到 20 世纪 60 年代,但由于航天器上可用功率的增加,该技术的潜力才刚刚开始得到充分发挥,最近出现的全电动通信卫星就证明了这一点。本文首先介绍了电力推进器的基本原理:动量守恒和理想火箭方程、比冲和比推力、性能指标以及与化学推进器的比较。随后,讨论了电源类型和特性对任务概况的影响。根据推力产生过程,等离子推进器通常分为三类:电热、静电和电磁装置。通过讨论电弧喷射推进器、MPD 推进器、脉冲等离子推进器、离子发动机以及霍尔推进器及其变体等长期存在的技术,介绍了这三个组以及相关的等离子放电和能量传输机制。随后讨论了更先进的概念和性能改进的新方法:磁屏蔽和无壁配置、负离子推进器和磁喷嘴等离子加速。最后,分析了各种替代推进剂方案,并研究了近期可能的研究路径。
标准# 标准文本 HS-PS1-3 计划并开展调查,收集证据,比较宏观和微观尺度上物质的结构,推断粒子间电力的强度。澄清声明:重点在于理解粒子间力的强度,而不是命名特定的分子间力(例如偶极子 - 偶极子)。粒子的例子可以包括离子、原子、分子和网络化材料(例如石墨)。物质性质的例子可以包括熔点和沸点、蒸气压和表面张力。评估范围:评估不包括拉乌尔定律对蒸气压的计算。HS-PS2-1 分析数据以支持以下说法:牛顿第二运动定律描述了宏观物体上的净力、其质量和加速度之间的数学关系。澄清声明:数据示例可以包括受到净不平衡力作用的物体的位置或速度随时间变化的表格或图表,例如下落的物体、从斜坡上滑下的物体或被恒定力拉动的移动物体。评估范围:评估仅限于一维运动和以非相对论速度运动的宏观物体。HS-PS2-2 使用数学表示来支持以下说法:当系统上没有净力时,物体系统的总动量守恒。澄清声明:重点在于相互作用中动量的定量守恒及其定性意义。评估范围:评估仅限于两个在一维运动的宏观物体系统。HS-PS2-3 运用科学和工程思想来设计、评估和改进一种装置,以最大限度地减少碰撞过程中对宏观物体的力。 * 澄清声明:评估和改进的例子包括确定设备在保护物体免受损坏方面的成功程度以及修改设计以改进设备。设备的例子包括橄榄球头盔或降落伞。
标准# 标准文本 HS-PS1-3 计划并进行调查,收集证据,比较宏观和微观尺度上物质的结构,推断粒子间电力的强度。澄清声明:重点在于理解粒子间力的强度,而不是命名特定的分子间力(例如偶极子 - 偶极子)。粒子的例子可以包括离子、原子、分子和网络材料(例如石墨)。物质性质的例子可以包括熔点和沸点、蒸气压和表面张力。评估范围:评估不包括拉乌尔定律对蒸气压的计算。HS-PS2-1 分析数据以支持以下说法:牛顿第二运动定律描述了宏观物体上的净力、其质量和加速度之间的数学关系。澄清声明:数据示例可以包括受到净不平衡力作用的物体的位置或速度随时间变化的表格或图表,例如下落的物体、从斜坡上滑下的物体或被恒定力拉动的移动物体。评估范围:评估仅限于一维运动和以非相对论速度运动的宏观物体。HS-PS2-2 使用数学表示来支持以下说法:当系统上没有净力时,物体系统的总动量守恒。澄清声明:重点在于相互作用中动量的定量守恒及其定性意义。评估范围:评估仅限于两个在一维运动的宏观物体系统。HS-PS2-3 运用科学和工程思想来设计、评估和改进一种装置,以最大限度地减少碰撞过程中对宏观物体的力。 * 澄清声明:评估和改进的例子包括确定设备在保护物体免受损坏方面的成功程度以及修改设计以改进它。设备的例子包括橄榄球头盔或降落伞。评估范围:评估仅限于定性评估和/或代数运算。