Loading...
机构名称:
¥ 3.0

摘要。本文简要回顾了卫星和航天器的电力推进技术。电力推进器,也称为离子推进器或等离子推进器,与化学推进器相比,其推力较低,但由于能量与推进剂分离,因此可以实现较大的能量密度,因此在太空推进方面具有显著优势。尽管电力推进器的发展可以追溯到 20 世纪 60 年代,但由于航天器上可用功率的增加,该技术的潜力才刚刚开始得到充分发挥,最近出现的全电动通信卫星就证明了这一点。本文首先介绍了电力推进器的基本原理:动量守恒和理想火箭方程、比冲和比推力、性能指标以及与化学推进器的比较。随后,讨论了电源类型和特性对任务概况的影响。根据推力产生过程,等离子推进器通常分为三类:电热、静电和电磁装置。通过讨论电弧喷射推进器、MPD 推进器、脉冲等离子推进器、离子发动机以及霍尔推进器及其变体等长期存在的技术,介绍了这三个组以及相关的等离子放电和能量传输机制。随后讨论了更先进的概念和性能改进的新方法:磁屏蔽和无壁配置、负离子推进器和磁喷嘴等离子加速。最后,分析了各种替代推进剂方案,并研究了近期可能的研究路径。

卫星和航天器的电力推进:成熟技术和新方法

卫星和航天器的电力推进:成熟技术和新方法PDF文件第1页

卫星和航天器的电力推进:成熟技术和新方法PDF文件第2页

卫星和航天器的电力推进:成熟技术和新方法PDF文件第3页

卫星和航天器的电力推进:成熟技术和新方法PDF文件第4页

卫星和航天器的电力推进:成熟技术和新方法PDF文件第5页

相关文件推荐

2023 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2023 年
¥5.0
2024 年
¥1.0
2023 年
¥14.0
2024 年
¥6.0