RV144 HIV-1 疫苗试验结果显示,接种疫苗者病毒感染率略有下降,并诱导了抗体依赖性细胞毒性和针对 HIV 包膜蛋白可变环区 1 和 2 的疫苗特异性 IgG 和 IgG3 反应。然而,随着 HVTN 702 临床试验最近的失败,全面分析体液免疫反应可能会为这些令人失望的结果提供见解。HVTN 702 研究中包含的一项变化是增加了后期加强,旨在增强峰值免疫力和持久性。配套疫苗试验 RV305 旨在允许评估后期加强的免疫学影响,无论是单独使用加强蛋白抗原、单独使用金丝雀痘病毒载体 ALVAC 还是两者结合。尽管先前的数据显示,无论是否掺入 ALVAC-HIV 载体,两个加强组中的 IgG 抗体水平均升高,但对塑造抗体效应功能的影响仍不清楚。因此,我们在此分析了 RV305 加强方案诱导的抗体和功能特征,发现尽管包括蛋白质加强的两个组中 IgG1 水平均有所增加,但与原始 RV144 疫苗策略相比,IgG3 水平有所降低。无论是否加入病毒载体引发剂,大多数功能反应在蛋白质加强后都会增加。这些数据表明,仅添加晚期蛋白质加强就足以 […]
DENV血清型4是最不同的,其次是DENV血清型3,而DENV血清型1和2彼此之间更紧密相关。所有血清型感染都具有长期免疫力,但对其他三种的过渡性免疫有限。根据流行病学研究,具有各种血清型的继发性感染与更严重的登革热有关。10登革热病毒的生理涉及3种结构蛋白C,PRM和E,它们会翻译和翻译后形成完整的感染性病毒颗粒,也称为病毒体。为了构建核蛋白质,C(衣壳)蛋白围绕病毒基因组RNA。该核素被包裹在包含病毒前膜蛋白的脂质双层中,也称为PRM蛋白和包膜蛋白,即,电子蛋白。7种非结构蛋白(NS1/NS2A/NS2B/NS3/NS4A/NS4B/NS5)在受感染的细胞中表达,对于病毒复制,病毒体装配和免疫逃避是必需的。非结构蛋白通常存在于细胞质中,它们提供了有助于病毒RNA产生的复制产物。登革热病毒NS1是内质网中连接的亲水膜均匀二聚体。因为NS1蛋白的突变会影响RNA的产生,研究NS1蛋白的三维(3D)结构和病毒NS1 - NS2A蛋白催化结构域可以帮助理解NS1亚基在病毒病原体中的形状和参与。ns2b充当伴侣,帮助NS3分量折叠成其活性形状。登革热病毒NS3和NS5它还参与底物 - 酶相互作用以及膜附着。
使用 CRISPR/Cas9 技术对生殖系进行基因编辑,可以改变牲畜性状,包括产生对病毒性疾病的抗性。然而,病毒的适应性可能是这一努力的主要障碍。最近,通过使用 CRISPR/Cas9 基因组编辑删除 ALV-J 受体 NHE1 中的单个氨基酸 W38,开发出了对禽白血病病毒亚群 J (ALV-J) 具有抗性的鸡。这种抗性在体外和体内均得到了证实。体外显示 W38 -/- 鸡胚胎成纤维细胞对所有测试的 ALV-J 菌株具有抗性。为了研究 ALV-J 进一步适应的能力,我们使用了基于逆转录病毒报告基因的检测来选择适应的 ALV-J 变体。我们假设克服细胞抗性的适应性突变会发生在包膜蛋白中。根据这一假设,我们分离并测序了大量适应的病毒变体,并在它们的包膜基因中发现了八个独立的单核苷酸替换。为了确认这些替换的适应能力,我们将它们引入原始的逆转录病毒报告基因中。所有八个变体在体外都能在 W38 -/- 鸡胚胎成纤维细胞中有效复制,而在体内,W38 -/- 鸡对其中两个变体诱导的肿瘤敏感。重要的是,具有更广泛修改的受体等位基因仍然对病毒具有抵抗力。这些结果证明了牲畜基因组工程中实现抗病毒抗性的重要策略,并说明由较小受体修改引起的细胞抗性可以通过适应的病毒变体来克服。我们得出结论,需要更复杂的编辑才能获得强大的抵抗力。
摘要 最近的 SARS-CoV-2 大流行给世界带来了惨痛的教训,不仅让世界认识到病毒性疾病爆发的灾难性后果,也让世界认识到疫苗接种在限制生命和经济损失方面的显著影响。接种乙肝病毒 (HBV) 疫苗仍然是实现到 2030 年消除病毒性肝炎的关键行动,HBV 是一种影响全球 2.9 亿人的主要人类病原体。为了实现这一目标,开发改良的 HBV 抗原对于克服对基于酵母产生的小 (S) 包膜蛋白的标准疫苗的无反应性至关重要。我们最近表明,将 S 和大 (L) HBV 蛋白的相关免疫原性决定簇结合在嵌合抗原中可显着增强抗 HBV 免疫反应。然而,对具有成本效益的高质量抗原的需求仍然具有挑战性。可以通过使用植物作为多功能且可快速扩展的蛋白质生产平台来解决此问题。此外,最近通过 CRISPR/Cas9 基因组编辑生成的缺乏 b -1,2-木糖基转移酶和 a -1,3-岩藻糖基转移酶活性 (FX-KO) 的植物,能够生产具有“人源化” N-糖基化的蛋白质。在本研究中,我们研究了植物 N-糖基化对野生型和 FX-KO 本氏烟中产生的嵌合 HBV S/L 候选疫苗免疫原性的影响。与野生型植物产生的对应物相比,防止 b -1,2-木糖和 a -1,3-岩藻糖附着到 HBV 抗原上显著增强了小鼠的免疫反应。值得注意的是,FX-KO 产生的抗原引发的抗体更有效地中和了野生型 HBV 和临床相关的疫苗逃逸突变体。我们的研究首次证实了糖工程改造的本氏烟可以显著改善植物生产糖蛋白疫苗的宿主。
猪繁殖与呼吸综合征 (PRRS) 是最重要的猪病之一,造成全球巨大的经济损失。病原体 PRRS 病毒 (PRRSV) 是一种有包膜的单链正义 RNA 病毒,与马动脉炎病毒 (EAV)、小鼠乳酸脱氢酶升高病毒 (LDV) 和猿猴出血热病毒 (SHFV) 一起被归类为动脉炎病毒科、动脉炎病毒属、Variarterivirinae 亚科。其基因组长度约为 15 kb,包含至少 11 个开放阅读框 (ORF),具有 5' 帽和 3' 多聚腺苷酸尾 (1-3)。约占基因组三分之二的ORF1a和ORF1b编码非结构蛋白(nsp1~12),具有蛋白酶、复制酶和调控宿主细胞基因表达等功能,负责病毒RNA的合成( 4 )。基因组3’末端的ORF2~7编码结构蛋白,包括糖蛋白2(GP2)、GP3、GP4、GP5、包膜蛋白(E)、基质蛋白(M)、核衣壳蛋白(N),由一系列亚基因组RNA表达( 5 )。由于PRRSV RNA依赖性RNA聚合酶(RdRp)缺乏校对能力,病毒基因组极易发生突变和重组,导致世界范围内出现新的PRRSV分离株( 6 )。目前,PRRSV 可分为两个种:PRRSV-1(欧洲基因型,Betaarterivirus suid 1)和 PRRSV-2(北美基因型,Betaarterivirus suid 2)。两个种均表现出很高的遗传多样性,核苷酸序列同一性约为 60%,每个种可进一步分为多个分支、亚株或谱系。在中国,优势毒株为 PRRSV-2,其高致病性变异株的爆发引起养猪业的担忧(7)。PRRSV 感染可导致母猪严重繁殖障碍,并使各年龄段的猪患上呼吸道疾病,并常导致继发性细菌感染(如副猪嗜血杆菌和猪链球菌),临床表现更严重,死亡率更高(8)。
生物技术及其各种应用是12类生物学课程的关键部分。学生可以在提供的链接上访问该主题的详细说明,练习论文和研究材料。这些注释涵盖了与生物技术及其在农业和医学中的应用有关的关键概念,定义,实例和重要点。这些笔记旨在帮助学生更好地了解该主题,并为JEE,NEET,UPSC等竞争性考试做准备。关于生物技术及其应用的12类生物学注释可以下载为PDF文件,以供将来参考。The education boards covered by these notes include CBSE, CISCE, AHSEC, CHSE Odisha, CGBSE, HBSE, HPBOSE, PUE Karnataka, MSBSHSE, PSEB, RBSE, TBSE, UPMSP, UBSE, BIEAP, BSEB, GBSHSE, GSEB, JAC, JKBOSE, KBPE, MBOSE, MBSE, MPBSE,NBSE,DGE TN,TSBIE,COHSEM,WBCHSE。学生还可以访问12类生物学生物技术及其应用的NCERT解决方案,以获取所有答案。解决方案包含解决所有问题的问题,答案和步骤。这些笔记与印度的所有董事会有关,可以用作竞争性考试的研究材料。涉及生物制药和生物学的工业规模生产。应用包括治疗学,诊断,遗传改性的农作物,加工食品,生物修复,废物处理和能源生产。三个关键的研究领域是:(i)作为催化剂(通常是微生物或纯酶)发展的改善生物。(ii)催化剂作用的工程师最佳条件。(b)有机农业。(iii)下游加工技术以净化蛋白质/有机化合物。农业中的生物技术应用涉及三种选择:(a)基于农业化学的农业。(c)基于作物的基于基因的农业。绿色革命增加了由于改善农作物品种,农业化学和更好的管理实践而增加的粮食生产。植物中的遗传修饰已导致农作物变得越来越耐受性胁迫,减少对化学农药的依赖,收获后损失减少以及矿物质使用效率提高。某些应用包括耐药植物的生产,从而减少农药的使用。bt毒素是由细菌产生的,并在植物中表达以提供对昆虫的抗性,从而产生了诸如BT棉,Bt玉米,金米,番茄,土豆和大豆等生物农药。bt棉是使用苏云金芽孢杆菌(BT)的菌株创建的。该细菌会产生杀死某些昆虫的蛋白质。毒素作为非活性素毒素存在,但在昆虫的肠道中变得活跃,导致细胞肿胀和裂解导致死亡。特定的BT毒素基因是从苏云金芽孢杆菌中分离出来的,并将其掺入棉花等几种作物植物中。大多数BT毒素是特定于昆虫组的。使用生物技术过程开发了耐虫害的植物。例如,RNA干扰(RNAi)用于针对感染烟草植物的线虫,从而减少产量。在此处给出的文字:由于补充DSRNA而导致特定mRNA的沉默。4。I.II。 iii。II。iii。它发生在所有真核生物中,是一种细胞防御的方法。(c)dsRNA结合并防止mRNA的翻译(沉默)。(d)该互补RNA的来源可能来自具有RNA基因组或移动遗传元件(转座子)的病毒感染,这些病毒通过RNA中间体复制。(E)农业载体用于将线虫特异性基因引入宿主植物。它在宿主细胞中同时产生感官和抗沉思RNA。(f)这两个RNA相互互补并形成双链RNA(dsRNA),该RNA(dsRNA)启动RNAi并因此使线虫的特定mRNA保持沉默。(g)寄生虫无法在转基因宿主中生存,表达特定的干扰RNA。因此,转基因植物受到寄生虫的保护。在医学中的生物技术应用,通过实现大规模生产安全,更有效的治疗药物,对医疗保健领域产生了巨大影响。(a)重组治疗剂不会像从非人类来源分离出的类似产品那样诱导不必要的免疫反应。(b)目前,已批准了大约30种重组治疗剂在世界范围内使用人类。在印度,目前有12个正在销售。基因设计的胰岛素可导致足够的胰岛素可用于管理成人发作的糖尿病。(a)用于糖尿病的胰岛素较早从屠宰的牛和猪的胰腺中提取。这引起了某些患者过敏或其他反应。(b)胰岛素由两个短多肽链组成,即链-A和B,由二硫键桥连接在一起。在哺乳动物中促胰岛素成熟为胰岛素(简化)(c),胰岛素被合成为激素(需要在它变成完全成熟和功能性激素之前对其进行处理),其中包含一种称为C肽的额外拉伸。(d)成熟胰岛素中不存在C肽,并在成熟成胰岛素中去除。因此,使用rDNA技术生产胰岛素的主要挑战是将胰岛素组装成成熟的形式。(e)1983年的美国公司Eli Lilly,准备了与人类胰岛素A和B链相对应的两个DNA序列,并将它们引入大肠杆菌的质粒中以产生胰岛素链。链A和B分别产生,通过产生二硫键以形成人类胰岛素来提取和组合。通过基因工程生产疫苗这种疫苗称为重组疫苗,也称为“亚基疫苗”或“第二代疫苗”,例如乙型肝炎。这是两种类型:(a)蛋白质疫苗对疫苗中rDNA产生的特定蛋白质的使用。(b)使用基因工程DNA的DNA疫苗被注射为疫苗,以产生免疫反应。肝炎疫苗含有病毒包膜蛋白,乙型肝炎表面抗原(HB8 AG)。该基因是从酵母载体中分离出来的。从病原体中分离出的一些蛋白质编码基因也被掺入并在植物中表达产生抗原,也称为可食用疫苗。基因疗法是一种允许在儿童或胚胎中诊断的基因缺陷的方法集合。(a)基因被插入人的细胞和组织以治疗疾病。(b)遗传缺陷的纠正涉及将正常基因递送到基因疗法中,并进行疾病治疗的分子诊断和早期检测•基因治疗已用于治疗一个四岁的腺苷脱氨酶(ADA)缺乏症的女孩,这是1990年代的首次使用。ADA缺乏是由腺苷脱氨酶的基因缺失引起的。通过破坏线虫特异性RNA,使植物免受线虫的侵害。这个想法是将这项技术应用于基因工程胰岛素的生产。在糖尿病病例中,个体不会产生适当的胰岛素,导致血糖水平升高。获取胰岛素的传统方法涉及从诸如cattles和猪等动物中提取胰岛素,但是这些有缺点,例如过敏反应以及疾病转移到人类的风险。胰岛素以一种称为胰岛素的非活性形式释放,该胰岛素具有三个多肽链-a,b和C。通过成熟,这变得活跃,失去了额外的C-溶肽链。首次通过为人类成熟胰岛素的多肽链A和B制备DNA序列,首次使用rDNA技术产生胰岛素。基因治疗是另一种旨在通过向患者提供有缺陷基因的副本来治愈遗传遗传疾病的应用。它涉及诸如骨髓移植,酶替代疗法或将功能基因引入细胞之类的方法。第一种临床基因治疗是用于ADA缺乏症,影响嘌呤代谢。这涉及将功能性ADA cDNA引入淋巴细胞中,然后将其返回给患者。分子诊断对于早期疾病诊断和治疗至关重要。这涉及使用各种方法(例如血清测试)在早期识别疾病。早期发现HIV,癌症等疾病对于有效治疗至关重要。 但是,但是,诸如尿液分析之类的常规方法不提供预警信号。免疫吸收测定法(ELISA) - 通过抗原抗体反应检测病原体的存在。转基因动物是通过将外源基因引入其DNA中产生的。 这些动物用于:▪研究正常的生理学和发育▪建模人类疾病,例如癌症,囊性纤维化和阿尔茨海默氏症■生产生物学产品,例如α-1-抗抗蛋白酶(如α-1-抗抗肽),人蛋白质增强的牛奶,等等。例如geac。 印度的工程批准委员会规定使用转基因(GM)生物用于公共服务,以确保其安全。 但是,对食物和医学来源的生物的修改和使用引起了人们对专利赠款的关注。早期发现HIV,癌症等疾病对于有效治疗至关重要。但是,诸如尿液分析之类的常规方法不提供预警信号。免疫吸收测定法(ELISA) - 通过抗原抗体反应检测病原体的存在。转基因动物是通过将外源基因引入其DNA中产生的。这些动物用于:▪研究正常的生理学和发育▪建模人类疾病,例如癌症,囊性纤维化和阿尔茨海默氏症■生产生物学产品,例如α-1-抗抗蛋白酶(如α-1-抗抗肽),人蛋白质增强的牛奶,等等。例如geac。印度的工程批准委员会规定使用转基因(GM)生物用于公共服务,以确保其安全。但是,对食物和医学来源的生物的修改和使用引起了人们对专利赠款的关注。公司已获得使用遗传材料,植物和生物资源的产品和技术专利,这些产品长期以来一直使用农民和土著人民。专利通常授予一定期限的发明权,不包括其他人未经许可使用或出售发明。印度政府允许像美国这样的公司获得专利的GM稻米品种,例如Basmati Rice,尽管它来自现有的印度农民的品种。这引发了关于知识产权和传统知识所有权的争议。此外,跨国公司已被指控生物流产,这涉及未经授权使用的生物资源和传统知识,而没有赔偿性付款。这些国家拥有丰富的生物多样性和传统知识,而工业国家通常在财务上富有,但缺乏这些资源。为了解决这个问题,一些国家已经制定了法律,以防止其生物资源和传统知识的开采。