与精神疾病相关的大多数遗传变异位于基因组的非编码区域。为了调查其功能含义,我们整合了来自Psychencode联盟和其他已发表来源的表观遗传数据,以构建候选脑部顺式调节元素的全面地图集。使用深度学习,我们对这些元素的序列语法进行了建模,并预测谱系特异性文字因子的结合位点如何有助于各种类型的神经胶质和神经元中细胞类型特异性基因调节。元素的进化史表明,大脑中的新调节信息主要是通过保守的哺乳动物元素中的较小序列突变出现的,而不是全新的人类或灵长类动物特异性序列。然而,灵长类动物特异性的候选元素,尤其是在胎儿脑发育和兴奋性神经元和星形胶质细胞中活跃的元素,与脑相关的人类性状的遗传力有关。此外,我们介绍了一个基于Web的平台PsychScreen,该平台可在患有精神疾病和健康控制的个体中各种脑细胞类型的精神码产生的遗传和表观遗传数据的交互式可视化。
支持中小型企业,研究机构和主要企业之间的任何合作,着重于生物过程。增加了SME的可见性,创新能力和产品组合。通过跨学科财团捆绑能力: - 传感器技术和生物过程监测 - 生物反应器和过程设计 - 过程自动化,数字化和数字化 - 微电子和IT-培养方法,发酵方法以及优化的分析方法开发了各种应用程序中改进的生物启动特征的分析方法。
摘要:在过去的十年中,包括5G在内的Modern电信技术的扩散以及广泛采用The Internet(IoT)导致了数据生成和传播的前所未有的激增。这次激增创造了对高级信号处理能力的不断升级需求。微波处理(MWP)处理器提供了一种有希望的解决方案,以满足资本对高带宽和低潜伏期对光学系统可实现的史无前例的数据处理需求。在这项工作中,我们引入了使用Ele-thickimony的全光RF过滤的集成MWP处理单元。我们利用了锑的结晶动力学来证明光子泄漏的积分器,该积分器被认为是作为一阶低通量过滤器,带宽为300 kHz,超紧凑型足迹为16×16μm2。我们通过实验证明了这种过滤器作为包膜检测器的实现,以解调振幅调节信号。最后,提出了有关实现带宽可调性的讨论。
(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
核研究所(ATOMKI)地球物理与太空科学研究所布达佩斯特大学技术与经济学大学(BME,全球)布达佩斯特技术与经济学大学(BME)(BME,土木工程学院)布达佩斯特技术与经济学大学(BME)技术与经济学系(BME)(BME,Optics,Optics,Optics),BUTAPEST INFENOMITION of BUTAPEST INF型技术和经济学系(BME)和地球科学(ELKH,地球化学研究所)天文学与地球科学研究中心(ELKH,KONKOLY天文台)自然科学自然科学研究中心debrecen大学(UD EötvösLoránd大学,太空研究小组能源研究中心LECHNER知识中心,卫星测量天文台Lechner知识中心,遥感部门,Óbuda大学,地球形式学会匈牙利气象学服务学院SZEGED,SZEGED,SZEGED,非线性动力学,SZEGECERICICS INSPERAICS INSCERTICT of SERTORTIC固态物理与光学研究所物理Wigner物理研究中心
锕 (227) 钍 232.0 镤 231.0 铀 238.0 镎 (237) 钚 (244) 镅 (243) 锔 (247) 锫 (247) 锎 (251) 锿 (252) 镄 (257) 钔 (258) 锘 (259) 铹 (262)