极化在光 - 物质相互作用中起着至关重要的作用。因此,其整体操作是解锁光线制造能力的重要关键,尤其是在飞秒激光直接写作中。现有的偏振技术仅着眼于光束横向的操作,即二维对照。在本文中,我们提出了一种新颖的被动策略,该策略利用了一类飞秒激光的书面空间变化的双向元素,以沿光路沿光路塑造极化状态。作为演示,我们生成了一个三维结构化贝塞尔束,其线性极化状态正在沿焦点缓慢演变(典型。60)。这样的“螺旋极化”贝塞尔束允许在SIO 2中印刷“扭曲的纳米射击”,从而在微米尺度上产生外在的光学手性,该刻度具有高光学旋转。我们的工作为三维极化操作带来了新的观点,并将在结构化的光线,轻度互动和手性装置制造中找到应用。
摘要:III类WRKY转录因子在植物应对多种非生物胁迫和次生代谢中起着至关重要的作用,但WRKY66的进化和功能尚不清楚。本研究对WRKY66同源物进行追溯,发现其经历了基序的获得与丢失以及纯化选择。系统发育分析表明145个WRKY66基因可分为三个主要进化枝(A~C进化枝)。替代率检验表明WRKY66谱系与其他谱系有显著差异。序列分析显示WRKY66同源物具有保守的WRKY和C2HC基序,且平均丰度中关键氨基酸残基的比例更高。AtWRKY66是一个核蛋白,可受盐和脱落酸诱导的转录激活因子。同时,在盐胁迫和脱落酸处理下,由成簇的、规律间隔的、短回文重复序列/CRISPR-相关9(CRISPR/Cas9)系统产生的Atwrky66敲低植物的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性以及种子发芽率均低于野生型(WT)植物,但相对电解质渗漏(REL)较高,表明敲低植物对盐胁迫和脱落酸处理的敏感性增加。此外,RNA-seq和qRT-PCR分析表明,敲低植物中参与应激反应的脱落酸介导的信号通路中的几个调控基因受到显著调控,表现为基因表达更温和。因此,AtWRKY66可能在盐胁迫反应中起正调控作用,可能参与脱落酸介导的信号通路。
5 Albers,S. -V。 &Jarrell,K。F.古细菌:古细菌如何游泳。 微生物学中的边界6,doi:10.3389/fmicb.2015.00023(2015)。 6 Albers,S. -V。 &Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。 微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。 7 Van Wolferen,M.,Orell,A。 &Albers,S. -V。 古细菌生物膜形成。 自然评论微生物学16,699-713(2018)。 8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。 微生物学的前沿6,190(2015)。 9 Walker,D。等。 hungatei的甲螺旋藻的古细胞是导电性的。 。 MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。5 Albers,S. -V。&Jarrell,K。F.古细菌:古细菌如何游泳。微生物学中的边界6,doi:10.3389/fmicb.2015.00023(2015)。6 Albers,S. -V。 &Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。 微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。 7 Van Wolferen,M.,Orell,A。 &Albers,S. -V。 古细菌生物膜形成。 自然评论微生物学16,699-713(2018)。 8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。 微生物学的前沿6,190(2015)。 9 Walker,D。等。 hungatei的甲螺旋藻的古细胞是导电性的。 。 MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。6 Albers,S. -V。&Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。7 Van Wolferen,M.,Orell,A。&Albers,S. -V。古细菌生物膜形成。自然评论微生物学16,699-713(2018)。8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。微生物学的前沿6,190(2015)。9 Walker,D。等。hungatei的甲螺旋藻的古细胞是导电性的。。MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。MBIO 10,E00579-00519(2019)。10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。MBIO 12,E02344-02321(2021)。11 Quemin,E。R.等。首先深入了解过度授予性古细菌病毒的进入过程。J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。12 Baquero,D。P.等。病毒研究的进展。108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。13 Briegel,A。等。跨古细菌和细菌的趋化机制的结构保护。环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。14 Quax,T。E. F.,Albers,S. -V。 &Pfeiffer,古细菌的出租车。 生命科学的新兴主题2,535-546,doi:10.1042/etls20180089(2018)。 15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。 &Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。 分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。 16 Meyerdierks,A。等。 元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。 环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。 17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。14 Quax,T。E. F.,Albers,S. -V。&Pfeiffer,古细菌的出租车。生命科学的新兴主题2,535-546,doi:10.1042/etls20180089(2018)。15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。 &Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。 分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。 16 Meyerdierks,A。等。 元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。 环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。 17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。&Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。16 Meyerdierks,A。等。元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。17 Chadwick,G。L.等。比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。&Mansoorabadi,S。O。甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。Science 354,339-342,doi:10.1126/science.aag2947(2016)。19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。19 Michael,A。J.多胺在古细菌和细菌中的功能。生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。20 Morimoto,N。等。在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。核酸研究28,27-30,doi:10.1093/nar/28.1.27(2000)。22 Mihara,H。&Esaki,N。细菌半胱氨酸脱硫酶:它们的功能和机制。应用微生物学和生物技术60,12-23,doi:10.1007/s00253-002-1107-4(2002)。23 Tchong,S.-I.,Xu,H。&White,R。H. L-半胱氨酸脱硫酶:一种从Jannaschii中分离出的[4FE -4S]酶,催化了L-半结合体为吡酸丙酮酸,氨氨基和硫化物的溶解。生物化学44,1659-1670,doi:10.1021/bi0484769(2005)。
bagus.primohadi38@gmail.com摘要上空观察结果的局限性是分析天气的障碍之一。数据模型的使用可以是一种解决方案。本研究的目的是确定数据模型在使用RAOB作为充气图和发声信息分析仪的可视化工具提供上部空气信息方面的准确性。所使用的数据是来自Cengkareng气象站的辐射观察数据,与原位观测值相同的位置,1000 - 100 MB ECMWF压力水平模型。选择的时间是在观察时间00 UTC发生的5个事件的雾兹和雾时。使用的方法是Pearson相关性和简单的视觉验证。获得的结果是,当雾发生时,显着点图数据图的相关性为0.76,而雾霾的发生率为0.67,并且从视觉上讲,整个模型数据非常接近观察数据。在发生雾气时,整体上59个响起信息的相关性总体产生0.85 - 0.99的值,当雾霾发生时值为0.89 - 0.99。希望这些结果可以用作使用数据模型来填补辐射观察数据中的空白的考虑。关键字:发声信息,RAOB,RadioSonde,ECMWF模型。1。引言天气是在有限的时间和空间内的大气条件。天气条件通常从表面层的大气和上方的层的动力学中可以看出。使用飞行员气球观测(PIBAL)和辐射仪(自然,1957年)进行上空或上空空气的观测。辐射观测,以获取不同空气高度层处的几个天气参数的数据。观察到的参数是温度,露点,地球电位高度(与压力有关)以及风向和速度。处理辐射观察数据将获得与空气稳定性和其他几个派生参数有关的各种指数值,后来对分析和天气预测的目的非常有用(Syaifullah,2018)。印度尼西亚的守恒观察结果通常每天在00 UTC和12 UTC同时进行两次。非常动态的天气条件使上层空气的最新条件非常必要,因此模型计算似乎可以填补空的观察时间。广泛使用的一种模型是ECMWF(欧洲中范围内天气预报中心)模型。与验证ECMWF模型有关上空参数的研究表现出非常良好的热带表现,尤其是在温度和风参数方面(Haiden et
公共采购在任何经济中都是至关重要的市场,因为它经常使用一个国家的公共收入。公共采购程序对于开发支出的功效和效率至关重要。公共组织一直不得不遇到与业务相关的问题,例如获取及时且可靠的数据和信息,在业务交易过程中进行数据处理,使用方便手段存储数据以及还可以迅速进行决策和充分对组织的管理控制的检索机制。这项研究旨在评估供应链过程数字化对销售销售交易有效性的影响。该研究基于以下理论;数字效率理论和技术接受模型理论。访谈指南被用作肯尼亚农村道路管理局20名高级雇员的数据收集工具。使用内容分析分析了收集的数据。该研究建立了数据整合,员工数字水平和公共采购信息门户网站对采购交易的效率有积极而显着的影响。已经确定,数据整合使数据和信息可用,及时易于访问,员工数字能力使组织能够减少执行任务,减少错误并提高生产率和公共采购信息门户网站所花费的时间,使组织使组织能够轻松地检索汇总信息,并通过Internet平台与各种利益相关者进行交互。该研究得出结论,供应链过程数字化对肯尼亚农村道路管理局采购交易的效率有积极影响。该研究建议,肯尼亚农村道路管理局(KERRA)的管理有效地通过培训来为员工做好准备,然后再实施组织中的技术,并且国家财政部和公共采购监管机构中的决策者应增加在Kerra的预算分配量,以实施当前的供应链流程技术和员工的培训。未来的研究应集中于不同的方法,而不是案例研究,并使用统计方法来得出研究的结论。
印度班加罗尔理工学院 M. Tech 系助理教授 2 摘要:硬件安全涉及各种操作,包括电子商务、银行、通信、卫星、图像处理等领域。密码学不过是将纯输入文本转换为密码输出或反之亦然的过程。密码学有三种形式:私钥密码学、公钥密码学和哈希函数。私钥只不过是使用类似的密钥进行加密和解密过程,而公钥只不过是使用两个不同的密钥进行加密和解密过程。由于 AES 使用类似的密钥进行加密和解密,因此这种类型的性能非常重要,易于应用,并且需要的处理能力真正较低。加密过程是保护特定信息或数据通信的唯一方法。根据密钥长度,它更有效,并且有三种密钥长度选项可用,它们是 128 位、192 位和 256 位关键长度。密钥长度越长,破解系统或入侵系统所需的时间就越长。AES 执行四种不同的功能或转换,它们如下:子字节、移位行和混合列与添加轮密钥。通过使用流水线架构和 LUT,可以实现更高的速度。所提出的架构是在优化时序的基础上形成的,这是通过使用 verilog HDL 实现的。关键词:AES(高级加密标准)、FPGA(现场可编程门阵列)、LUT(查找表)、混合(混合列)移位(移位行)、子(子字节)。
表1 日本海事协会结构强度规范主要修订内容 时间 修订内容 1921 颁布《钢质船舶检验建造规范》第一版。 1949 日本海事协会(二战后由帝国海事协会更名)首次颁布《钢质船舶检验建造规范》。 1959 引入考虑砰击载荷的要求。 1961 引入基于理论公式的船壳板要求。 1963 引入桁架腹板的屈曲强度要求。 1972 引入基于长期预测的纵向弯矩。 1973 增设第31章“散货船”。(引入等效板格结构评估) 1974 将结构要求重新组织到《钢质船舶检验建造规范》C部分。引入基于直接强度计算的强度评估方法。 1980 使用基于长期预测的波浪压力进行大量修订。 1983 创建新的第 32 章“集装箱船”。 1987 部分纳入 UR S11(总纵强度)。 1989 引入组合载荷下的屈曲要求。 1993 创建新的第 29A 章“双壳油船”。 (引入纵向加强筋的疲劳强度要求) 1999 引入散货船安全相关要求。 (引入进水等情况下的强度要求) 2001 发布《油船结构指南》。 (引入净尺寸评估、等效设计波法、梁疲劳强度评估、极限船体梁强度评估) 2006 创建新的 CSR-B 和 CSR-T 部分。 2016 创建新的 CSR-B&T 部分。大幅修订集装箱船的要求。(引入考虑摇晃载荷的要求)
©南非储备银行保留所有权利。本出版物的任何部分都不能复制,存储在检索系统中,或以任何形式或任何方式传输,而没有完全确认作者和本工作文件作为来源。南非储备银行的工作文件是由南非储备银行的工作人员撰写的,有时是由南非储备银行主持下的顾问撰写的。论文涉及局部问题并描述初步研究发现,并在分析中开发新的分析或经验方法。他们完全打算引起评论并刺激辩论。本工作论文中表达的观点是作者的观点,不一定代表南非储备银行或南非储备银行政策的观点。虽然采取了每项预防措施来确保信息的准确性,但南非储备银行不应对此处包含的信息,遗漏或意见不准确。南非储备银行的工作文件在外部进行了裁定。可以在https://www.resbank.co.za/en/home/home/publications/papers/working-papers上找到有关南非储备银行工作文件的信息。与工作文件系列有关的查询可以解决:
纳米机器人体现了思维系统与纳米尺度具体化的纠缠、复杂和偶然的融合 1 。它们将前几章讨论过的更广泛的人工智能、仿生机器人和纳米技术领域的炒作、希望和不满融入到一个单一的人工制品中,并肩负着彻底改变生物医学和医疗保健的单一总体承诺。通过自主前往难以进入的体内部位,纳米机器人有望对药物进行成像和输送、消灭癌细胞,甚至进行手术切口。这就是 1966 年好莱坞大片《神奇旅程》中预见性地拍摄的纳米机器人的前景,近四十年后,2002 年迈克尔·克莱顿的惊悚片《猎物》将其妖魔化。然而,纳米机器人既不是《神奇旅程》中的乌托邦,外科医生可以缩小到微观尺度,乘坐微型潜艇穿越人体血液,也不是克莱顿笔下寄生纳米机器人群以人类为食的反乌托邦。事实上,一个改良版的乌托邦是可以实现的,即自主纳米机器人(而不是缩小的人类)提供有针对性的治疗,或者至少这是过去三十年来全球为实现这一目标而投入数百万美元的希望(WIPO,2015 年)。同时,人们普遍认为,如果不对人类、生物和数字的这种融合所带来的前所未有的风险进行明确的考虑、描述和缓解,这一承诺就不可能实现。因此,除了纳米机器人对生物医学和医疗保健的前景的炒作和希望之外,我们在此探讨的问题是,将这些人工制品常规化到临床实践中需要什么?
