基于快速LI +传导固体电解质(例如Li 7 La 3 Zr 2 O 12(LLZO))的抽象全稳态电池(LLZO)提供了对安全,不易燃率和温度耐受能量存储的透视。尽管有希望,但整个电池组件的陶瓷处理即将达到理论能力,并找到处理大规模和低成本电池电池的最佳策略仍然是一个挑战。在这里,我们解决了这些问题,并报告了由Li 4 Ti 5 O 12 / C- Li 6.25 Al 0.25 la 3 Zr 2 O 12 / Metallic Li提供的能力约70 - 75 AH / kg的固态电池电池,且可逆自行车以2.5 a / kg的速率(用于2.5 –1.0 –1.0 v,95 c,95°C)。发现,在固体电解质电极界面处能力增加和LI +转移是谷物及其连通性的紧密嵌入,可以通过细胞制备过程中的等速压力来实现。我们建议,通过确保在电解质电极界面上确保良好的谷物接触,可以在加工过程中进行简单的陶瓷处理,例如加工过程中的施加压力。在野外的石榴石型全稳态电池组件中,证明了
将来非常需要综合的能源转换和存储机制来满足能源消耗的需求。目前的调查是为了探索在该领域具有巨大潜力的材料。本研究探讨了硫化锌(ZNS)作为超级电容器电极的电荷储存行为。合成是通过成本效益,高效和直接反射方法完成的。合成的ZnS纳米颗粒表现出极好的结晶度,平均水晶大小为17 nm,并且具有微球形态和微球形态传递了74 fg –1在电流密度下1 Ag –1的74 fg –1,而72 fg –1在扫描速率为1 mvs –1的速度速率范围内的速度能力以及对合成的能力的出色速率ands and synessn and synessn ands and ands ands and and and and an 贮存。
使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
必须开发具有高容量电极和更环保、更经济、更稳定的系统的平面片上微电池,这对于为即将推出的微型片上系统智能设备供电至关重要。然而,由于制造工艺复杂、循环过程中微电极的稳定性以及在有限的设备体积内保持更高容量的挑战,高稳定性微电池领域的研究受到限制。为了满足这一需求,本研究专注于提供高度稳定和高容量的微电极。这涉及在电极材料和集电器之间添加 PEDOT 层,应用于平面聚苯胺阴极和锌阳极设备结构中以增强电荷存储性能。这种简单的策略不仅可以提高设备在长期循环中的稳定性并降低电荷转移阻力,还可以将 0.1 mA cm − 2 时的电荷存储容量从 17.64 μ Ah cm − 2 提高到 19.75 μ Ah cm − 2 。因此,锌离子微电池实现了显著的峰值面积能量和功率,分别为 18.82 μ Wh cm − 2 和 4.37 mW cm − 2。这项工作提出了一种有效的策略来提高平面微电池的电化学性能,这对先进便携式电子产品的发展至关重要。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
目的和使用科学是一种使用观察和实验来解释自然现象的理解物理宇宙的方式。科学还指一个有组织的知识体,其中包含核心学科和弥合学科的共同主题的核心思想。作为科学教育者,我们必须采取三维方法来促进学生学习。通过解决内容,科学和工程实践以及交叉概念,学生可以拥有相关和基于证据的教学,可以帮助解决当前和未来的问题。本文档旨在作为辨别学生及其作品的特征的指南,他们满足了既定的绩效期望(PE)。本文档并不是要从封面上阅读,而是要在需要时使用以支持教师专业学习和课程决策。这不是用于学生使用的,因此不是用学生友好的语言编写的。这不是限制教室中指令的课程或手段。尽管每个PE都陈述了专门的科学和工程实践(SEP)和横切概念(CCC),但学生将需要使用整个SEP和CCC来在教学结束之前取得成功。三维科学学习需要纪律特定的沟通能力。这意味着当希望学生以适合科学的方式讲话,倾听,阅读和写作时,就会发生有效的科学学习。本节中的条款和词干旨在为教师提供基准,既不详尽又完整。对于每个绩效目标,都有问题/句子的词干和术语来支持学生对现象的论述,以帮助教师促进科学话语的获取。在孤立或在经验之前教授语境(前载)的词或概念会剥夺学生的感知机会,从而导致更深入的概念理解。除了(SEP),思考(CCC)和了解科学知识(纪律核心思想)之外,学生还将需要了解适当的成绩适当工具和科学技术的工作知识。学生应该知道并认识到科学家和工程师如何使用这些工具和技术,而不仅仅是识别它们。学生应该能够使用这些工具来收集数据,描述这些工具如何收集数据和/或从中解释数据。
记录的版本:此预印本的一个版本于2024年4月20日在离子学上发布。请参阅https://doi.org/10.1007/s11581-024-05537-x。
印度尼西亚被称为包括鱼类在内的高生物多样性的热点。它们被进一步归类为海水鱼和淡水鱼[1],[2]。将约1.248种记录为印尼淡水鱼[3]。西爪哇省是使用淡水鱼作为当地社区蛋白质来源的许多领域之一。先前的一项研究表明,大约有147种淡水鱼类遍布整个爪哇地区,用于食品和观赏鱼类商品[5]。Pangalengan是西爪哇省的地区之一,距南巴隆约45公里。在该地区,有一个称为Situ Cileunca的人造湖,该湖是在1919年至1926年的荷兰政府时期建造的。先前的一项研究宣布,该湖中的大多数物种被称为土著物种,除了一种物种Aquidens Rivulatus [6]。此外,估计物种的数量会增加,随着几种新物种的发现[4],而对于原位Cileunca,尚不清楚到目前为止存在多少种。基于先前的研究,需要勘探活动来更新数据[6]。
随着迅速扩大的电动汽车(EV)市场,由于与常规的锂离子电池(LIBS)相比,由于其固有的优势和高能量密度的固有优势,迫切需要开发全稳态的LI电池(ASSB)。1将无机固体电解质(SES)作为必不可少的组件掺入可以利用Li金属阳极和高能量密度阴极,从而增加了能量密度。2领先的Sul sulsulese材料,例如Li 9.54 SI 1.74 P 1.44 S 11.7 Cl 0.3和Li 6.6 Si 0.6 SB 0.6 SB 0.5 S 5 I,在室温下在10 ms-cm-1上实现了极高的LI +电导率,在室温下,使用这些材料在室温下具有出色的液体效果,证明其具有杰出的液体性能与它们的液体效果相比可比性。3,4此外,sulsulsEs具有显着的低杨氏模量,可在室温下易于容易。5
摘要。考虑使用其他虚拟现实耳机到其他耳机的本机库在Unity游戏引擎中开发的虚拟现实应用程序的自动移植问题。确定了移植过程中产生的问题,并描述了其解决方案的算法。在作者先前针对不同耳机开发的移植vr-applications的工作中,对所提出的解决方案进行了测试。尚未解决的问题被描述,并提出了可伸缩性的可能性。随着VR在教育和行业中使用的增长,移植的任务非常广泛,因此,如果有必要扩大所使用的耳机范围,则提供的解决方案可以实现重大效果。