近年来,银纳米颗粒电极因其稳定性和导电性而被广泛研究,作为可穿戴和柔性电子产品的电极材料。湿化学沉积技术被认为是一种低成本且可扩展的技术。目前基于湿化学的纳米颗粒沉积技术包括电喷雾沉积、滴铸法、旋涂法和喷墨打印工艺。这些技术通常需要单独的沉积后退火步骤。这对于低熔点的基底来说可能是一个问题。此外,上述某些方法需要物理接触,这增加了交叉污染的可能性。在本研究中,我们提出了一种结合电喷雾和激光辐射的技术,可以在刚性或柔性基底上同时沉积和烧结纳米颗粒。在此过程中,银纳米颗粒水相悬浮液的微滴以所谓的微滴模式从金属毛细管喷嘴喷出,喷嘴可通过电位控制。锥形空心激光束用于蒸发液体并将纳米颗粒烧结到基底上的所需位置。与传统的导电微图案制备方法相比,这项技术前景广阔,因为它简化了一步沉积过程,减少了交叉污染,并且适用于各种表面。我们利用功率为 5 至 13 W 的 Nd:YAG 激光器制备了银纳米颗粒薄膜微图案。我们利用扫描电子显微镜、能量色散 X 射线和四探针分析研究了晶粒尺寸分布、成分和电阻率之间的相关性。结果与传统的热烧结方法相当。
教育和培训 名称 材料科学研究博士学位 XXV 周期 完成日期 2013 年 7 月 2 日 颁发者:卡塔尼亚大学 论文标题 在 (100) 和 (111) 硅晶片上进行化学镀银,通过辅助蚀刻制造纳米线和纳米柱。 http://archivia.unict.it:8080/handle/10761/1293 导师、监督员 Prof. Emanuele Rimini、Prof.ssa Maria Grazia Grimaldi、Dr. Giuseppe D'Arrigo 活动描述 博士论文提出了一种特殊的金属辅助化学蚀刻硅的技术高级研究,该技术是通过将覆盖有金属网络的半导体基板浸入含有氧化剂的溶液中来实现的。金属的存在使氧化优先发生在与基材接触的区域,从而有助于氧化。被氧化的部分会被溶液中含有的酸除去,而产生的凹陷会在起始基底上留下丝状结构。温度、溶液成分和照明会影响这一过程,金属网络的形态和基材的晶体取向也会影响这一过程。该金属是通过化学沉积获得的,将基材浸入含有不同浓度的金属盐(AgNO3、KauCl4、Na2PtCl6)和氢氟酸(HF)的溶液中不同时间。利用 RBS、SEM 和 TEM 研究沉积情况。通过使用各种光刻技术构造的基板,突出了对晶体取向的依赖性,这些基板允许在基板上选择性沉积金属。 TEM 观察
从而更能抵抗开发的影响。目前,已有多种已知且广泛用于工业的涂层沉积方法,例如选择性激光熔化、使用微米和纳米级粉末的 HVOF 技术以及反应爆炸喷涂 [1-3]。电沉积是另一种可以生产具有特定功能特性的现代涂层的方法。通过控制电沉积参数(即电流、电压、温度和镀液成分),可以影响所得材料的结构,从而影响其性能。该方法的本质是可以同时共沉积几种金属以形成合金,甚至将金属粉末掺入涂层结构中 [4-18]。镍是广泛用于各种电化学过程中的金属之一,因为它具有良好的耐腐蚀性。为改善镍镀层,人们采用了各种改性方法,例如使用合金代替纯元素 [5,6,12]。电解镍镀层中一种有趣的添加剂是铼,它是地球上最稀有、最昂贵的金属之一。金属铼类似于铂,通常被归类为贵金属。纯净的铼是一种银色、有光泽且硬度较高的金属。它可精炼金属合金,显著提高其硬度和耐腐蚀性。铼只溶解在氧化性酸中:硝酸和热浓硫酸。大量铼用于生产特殊合金或超级合金,例如在航空工业中用于生产喷气发动机部件。铼还用于生产热电偶、加热元件、电触点、电极、电磁铁、真空和 X 射线灯、闪光灯泡、金属涂层,也可用作复分解和环氧化等反应的催化剂 [19-22]。由于铼属于“耐腐蚀金属”类,因此亚铁族阳离子的存在对于电解合金涂层的形成是必要的。含铼合金涂层的电沉积研究已成为许多研究的主题。此类材料可通过电流和化学沉积方法生产 [23-25]。
1. 引言 近年来,由于钙钛矿太阳能电池成本低、效率高、制备简单等特点,吸引了众多研究人员的关注。自从 2009 年 Miyasaka 等人首次报道以来,钙钛矿太阳能电池 (PSC) 技术已经从 3.8% 提升至 25% 左右 [1,2]。基本的钙钛矿太阳能电池由透明导电层(例如氟掺杂氧化锡 (FTO) 或铟掺杂氧化锡 (ITO)、电子传输层、光敏钙钛矿层、空穴传输层以及金属电极)组成。由于电子传输层适用于所有层,因此它对于 PSC 的高效率起着重要作用。TiO 2 是最常用的电子传输层之一,因为它具有多种制备方法,例如旋涂、喷涂、溅射等 [3–5]。除了制备技术之外,TiO 2 结构还存在一些问题,例如氧空位和非化学计量缺陷,尤其是位于 TiO 2 表面的缺陷 [6,7]。这些缺陷阻碍电子流动,导致钙钛矿太阳能电池性能不佳。一些研究人员报道了一些不同的材料如 SnO 2 、 ZnO、CdS 和 WOx 代替 TiO 2 作为电子传输层 [8–11]。尽管 CdS 作为电子传输层还远远不能令人满意,但它可能是改性和钝化 TiO 2 表面的优异界面材料。最近,Hwang 等人报道 CdS 作为介孔 TiO 2 层的改性材料,可提高钙钛矿太阳能电池的稳定性 [12]。Zhao 等人使用 CdS 作为前体溶液的添加剂,观察到复合显著减少 [13]。Dong 等人使用 CdS 作为电子传输层,观察到 PSC 的效率为 16.5% [14]。Wessendorf 等人通过使用 CdS 作为电子传输层,观察到磁滞减小 [15]。Cd 扩散到钙钛矿层导致晶粒尺寸增加,从而提高效率 [16]。Mohamadkhania 等人使用 SnO 2 表面上的 CdS 作为界面改性剂,观察到磁滞减小和效率提高 [17]。Ma 等人表明,在 TiO 2 表面化学沉积 CdS 可将效率从 10.31% 提高到 14.26% [18]。