本研讨会将以电化学的基础为基础,解释反应速率与当前密度,吉布斯自由能和电压,电势和激活能以及NERNST方程和浓度过电势之间的联系。在电池领域,讨论将涵盖阳极和阴极材料的结构,固体溶液和相变材料的电荷分离曲线的形状,电荷的状态,排放的状态,电池中的热量源,电池的热源产生来源以及电解质的选择。此外,研讨会将深入探究阻抗光谱,环状伏安法和Galvanostatic间歇性滴定技术的基础知识。凭借其动手会议,该研讨会将是促进行业和学术界专业人员之间互动的绝佳场所。
核酸测试是现代分子诊断的基石。This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification meth- ods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)基于基于检测方法。我们探索每种技术的优点和局限性,描述每个技术如何与其他技术重叠或补充,并检查当前的临床产品。本综述为分子诊断的景观提供了广泛的观点,并突出了这个快速发展的领域的潜在未来方向。
学生的作用是成为托管研究小组的积极成员。Chem4710学生将从事分配的特定项目。但是,该项目很可能被整合到研究小组正在进行的较大研究计划中。因此,与小组成员和研究顾问的沟通非常重要。Chem4710项目是参加研究小组“生活”并向高级成员学习的绝佳机会。作为Chem4710经验的一部分,您积极参加该小组的参与也可以给您很好的印象。该小组的良好表现可能会为您的顾问提供积极的参考,以供任何未来的研究生学习,其他学位或进入劳动力的申请。
生物催化,使用天然催化剂(例如蛋白质酶)对有机化合物进行化学转化,已成为有机合成领域的关键技术。这种方法利用酶在轻度条件下催化反应的精致特异性和效率,为传统化学过程提供了可持续且环保的替代品。生物催化涉及使用天然催化剂(主要是酶)对有机化合物进行化学转化。生物催化的基本原理集中在酶的独特特性上,其中包括高特异性,效率和在轻度条件下运行的能力。理解这些原理对于欣赏如何利用有机合成和绿色化学的生物催化。
大规模序列建模引发了快速的进步,现在扩展到生物学和学位。但是,建模基因组序列引入了挑战,例如需要建模远程令牌相互作用,基因组的上流区域和下游区域的影响以及DNA的反向互补性(RC)。在这里,我们提出了一个以这些挑战为动机的建筑,这些挑战在远程Mamba区域建立,并将其扩展到支持双向性的Bimamba component,并将其扩展到支持RC等值的Mambadna块。我们使用amambadna作为caduceus的ba sis,这是第一个rc equivianiant双向远程DNA语言模型的第一个家族,我们引入了预训练和精细的调整策略,产生了caduceus dna fun-foun-foun-foun-foun-foun-foun-foun-foun-foun-foun-foun-foun-dation模型。caduceus在下游基准测试上优于以前的远程模型;在具有挑战性的远程变体效果前字典任务上,caduceus超过了不利用双向方向性或均衡性的10倍较大模型的性能。代码重现我们的实验。
碳氮比 (C/N) 除少数例外,氮原子数不应超过有机叠氮化物中的碳原子数。尽管可以少量合成一些 C/N 比在 1 和 3 之间的叠氮化物,但应尽快使用或淬灭叠氮化物。叠氮化物应储存在 -18 °C 且避光的环境中(最好放在塑料琥珀色容器中)。浓度不应超过 1 M。六规则评估有机叠氮化物稳定性的另一种方法是“六规则”,该规则规定每个能量官能团的碳原子数不应少于六个。每个能量官能团(叠氮化物、重氮、硝基等)六个碳原子(或其他大小大致相同的原子)可提供足够的稀释度,使化合物相对安全。每个官能团的碳原子数少于六个可能导致材料具有爆炸性。
摘要:生物化和可生物降解的聚酯等聚酯(丁基琥珀酸酯 - 丁二烯脂肪酯)(PBSA)正在成为单使用应用的油基热塑料的有希望的替代品。然而,PBSA的机械性和流变特性受其在熔体加工过程中的热机械灵敏度的影响,也阻碍了PBSA机械回收。传统的反应性熔体加工(RP)方法使用化学添加剂来抵消这些缺点,从而损害了可持续性。这项研究提出了一种在PBSA融化过程中的绿色反应性方法,基于对其热量降解行为的全面理解。在熔体加工过程中控制的降解路径的假设下可以促进分支/重组反应而不添加化学添加剂,我们旨在增强PBSA流变学和机械性能。使用内部批处理器进行了对PBSA的在线流变行为的深入研究,探索参数,例如温度,螺丝旋转速度和停留时间。评估了它们对PBSA链剪辑,分支/重组和交联反应的影响,以确定有效RP的最佳条件。结果表明,特定的处理条件,例如12分钟的处理时间,200°C温度和60 rpm的螺丝旋转速度,促进了PBSA中长链分支结构的形成。RP策略还改善了PBSA机械回收,从而使其成为低密度聚乙烯(LDPE)的潜在替代品。这些结构变化导致反应PBSA流变学和机械性能的显着增强,弹性模量增加了23%,屈服强度增加了50%,张力强度提高了80%。最终,这项研究表明了反应性熔体加工过程中热机械降解的高度控制可以改善材料的性能,从而实现可靠的机械回收,这可以作为其他可生物降解聚合物的绿色方法。关键词:PBSA,可生物降解聚合物,绿色反应性加工,化学修饰,回收,机械性能,NMR,生物饲养聚合物■简介
1纳多(Mohammed Premier University)纳多(Nador)的多学科学院,摩洛哥纳多62700,纳多62700; Abderrahim.boutasknit@gmail.com 2农业技术和生物工程中心,研究单元,标记为CNRST(中心Agrobiotech-url-7 CNRST-05),非生物和生物约束团队,Cadi Ayyad University(UCA),MARRAKESH 40000000000000000000000000000000000000000000000000000号,Marrakesh 40000,Morocco; bo.fassih@gmail.com(B.F.); wahbi@ucam.ac.ma(s.w.)3农业食品,生物技术和植物生物库(农业生物)的实验室,生物学系,科学学院,植物生理学和生物技术团队,卡迪·艾雅德大学(UCA),摩洛哥40000,摩洛哥40000,摩洛哥40000的生物学部门,环境和环境部门。科学与技术 - 莫哈梅二世卡萨布兰卡大学,穆罕默德二世,20000年,摩洛哥5环境与健康实验室,生物学系,科学与技术学院,莫莱·伊斯梅尔大学,莫洛伊·伊斯梅尔大学,bp 509,摩洛哥52000,摩洛哥; benlaouaneraja@gmail.com *通信:mohamed.aitelmokhtar@gmail.com(m.a.-e.-m.); a.meddich@uca.ma(a.m.);电话。: +212-671-492-144(M.A.-E.-M。); +212-661-873-158(A.M.)
理论化学是化学的一个分支,它基于理论原理和概念进行概括,并利用这些理论来理解化学过程中的基本物理原理。在理论化学的框架内,人们可以构建化学定律、原理及其修改和层次结构。化学系统的结构和性质之间的相互联系在理论化学中占有重要地位。理论化学使用数学方法和适当的物理假设来解释化学系统的结构、动力学和热力学,并建立它们之间的关联。在这样做的过程中,理论化学家经常使用计算机和计算方法来数值求解方程式,而无法得到解析解或对实际系统和现象进行模拟。然而,早期的瓶颈是没有超级计算机来处理大型化学系统。
烷基卤化物,具有卤素原子(氟,氯,溴或诱导)的化合物粘结到饱和碳原子,由于其多样性的反应性和广泛的应用,在有机化学中保持中心位置。这些化合物是有机合成中的至关重要的构件,为复杂分子的构建提供了多功能官能团。烷基卤化物的独特特性,例如它们的亲电性和离开群体的能力,使它们在各种化学转化中都可吸引。从历史上看,烷基卤化物已经通过传统方法(例如烷基化的卤代化或醇与卤代的取代反应)合成。然而,合成方法的最新进展导致开发了更高效,更可持续的途径,用于烷基卤化物制备,绿色化学原理,包括催化过程,无溶剂疾病和无溶剂经济反应,已成为烷基合成烷基烷基卤化物和微小的废物的整体成分。烷基卤化物的反应性包括各种反应,包括亲核取代,消除和自由基过程。了解这些反应的机械途径对于控制选择性和实现有机合成期望结果至关重要。最近的研究阐明了复杂的反应机制和新的新变化,扩大了烷基卤化物的合成效用。除了其合成效用之外,烷基卤化物还发现了在药物化学,材料科学和农业化学等不同领域的应用。将其掺入药物化合物中赋予了理想的特性,例如增加亲脂性或代谢稳定性。在材料科学中,烷基卤化物是合成聚合物,表面活性剂和具有量身定制特性的功能材料的前体。本综述旨在全面概述烷基卤化物的化学,涵盖其合成,反应性和应用。通过探索合成方法,机理见解和新兴应用方面的最新进展,本综述旨在阐明烷基卤化物在当代有机化学中的核心作用,并激发该动态领域中进一步的探索和创新。烷基卤化物是一类由与饱和碳原子结合的卤素原子组成的有机化合物,代表有机合成中的基本构建块,并在各个领域具有广泛的应用。烷基卤化物的化学因素由于其多种反应性模式以及其在药物化学,材料科学和工业过程中的重要性而引起了重大兴趣。合成的是,通过多种方法制备烷基卤化物,包括烷基的卤素化,醇与卤素的取代反应以及向烷烃添加卤素。合成方法的最新进展已引入了更可持续和有效的途径,以实现其合成,通常采用过渡金属催化和创新反应设计。绿色化学原理越来越多地整合到烷基卤化物的合成中,以最大程度地减少废物产生和环境影响。