澳大利亚 澳大利亚政府尚未表达尝试过渡到全电动社会的愿望。该学院指出,经济的深度脱碳肯定需要相当程度的电气化和燃料转换,但预计其他能源(如生物燃料和氢气)将在某些运输方式和工业过程的未来能源结构中发挥重要作用。 加拿大 加拿大很可能会在运输和家庭供暖中大幅增加电力使用量,尽管大型商用车、航空运输以及该国西海岸和东海岸的重要海上运输基础设施仍需要化石燃料。各省的能源政策差异很大。 中国 电气化将成为中国能源系统绿色转型的重要驱动力。尽管中国大力推进电气化,尤其是在交通运输领域,但距离走向全电动社会还很远。不同技术的混合得到大规模推广,将在未来能源系统中发挥重要作用。法国 2050 年实现碳中和的目标应在 2019 年底前通过法律,但目前尚无向全电力社会过渡的长期计划。政府应于今年夏天制定一项十年能源计划;在电力方面,主要方向是到 2022 年关闭所有燃煤电厂、到 2035 年将核能占比从目前的 72% 降至 50% 并扩大可再生能源占比。生物燃料和氢气应在未来某些运输方式和较长远的工业过程的能源结构中发挥重要作用。 德国 电气化和数字化将继续成为德国能源转型的主要趋势和驱动力。德国已设定雄心勃勃的目标,要增加可再生能源在电力消耗中的占比(到 2030 年占总能源消耗的 30%,到 2050 年占 60%)。这只有通过在热力和运输领域利用不断扩大的风能和太阳能发电才能实现。然而,德国尚未走向全电动社会——化学能源载体对于某些运输方式和工业流程仍将发挥重要作用。南非南非的可再生能源采购计划非常成功,已进行了四轮招标。该计划明确承诺以可承受的价格生产可持续能源。目前没有全电动战略。韩国韩国能源系统的电气化以及可再生能源和电动汽车将继续成为韩国能源转型的主要趋势和驱动力。按计划,到 2030 年,可再生电力将占总电力供应的 20% 以上,韩国将有 100 万辆电动汽车投入运营。尽管到 2030 年还无法实现完全电气化,但韩国能源系统似乎将比现在更加电气化。政府还宣布了面向 2040 年的“氢能经济路线图”,目标是到 2040 年生产 620 万辆氢燃料电池汽车。瑞士凭借其 2050 能源战略,瑞士正在朝着更高的(可再生)电力份额(从 25% 到 50%)和每年人均 1-1.5 吨能源相关的二氧化碳排放量(与现在相比减少 70-80%)迈进,同时放弃目前占该国消费量 40% 的核能。
(a)节省能源或水的行动,表现出势能或节水,并促进能源效率,这将无法引起室内或室外浓度的显着变化。这些行动可能涉及对个人(例如建筑商,所有者,顾问,制造商和设计师),组织(例如公用事业)和政府(例如州,地方和部落)的财务和技术援助。涵盖的动作包括但不限于气候化(例如绝缘和更换门窗);降低恒温器设置;将计时器放置在热水热水器上;安装或更换节能照明,低流水管固定装置(例如水龙头,厕所和淋浴喷头),供暖,通风,空调系统以及电器;滴灌系统的安装;发电机效率和设备效率评级的提高;车辆和运输的效率提高(例如机队的更换);电源存储(例如飞轮和电池,通常不到10兆瓦);运输管理系统(例如交通信号控制系统,汽车导航,速度摄像头和自动板号识别);开发节能制造,工业或建筑实践;以及小规模的能源效率和保护研究与发展以及小规模的试点项目。涵盖的行动包括建筑物的翻新或新结构,只要它们发生在先前受到干扰或发达的地区。涵盖的行动可能涉及商业,住宅,农业,学术,机构或工业部门。涵盖的行动不包括规则制定,标准安排或拟议的DOE立法,除了本附录B5.1(b)中列出的那些行动。(b)涵盖的行动包括为消费产品和工业设备建立节能标准的规则制定,但前提是行动不会:(1)有可能导致制造基础设施的重大变化(例如,建造具有相当相关的地面干扰的新制造工厂); (2)涉及有关可用资源(例如稀有或有限原材料)的替代用途的重大未解决的冲突; (3)有可能导致处置材料的处置显着增加,这对人类健康和环境带来了重大风险(例如RCRA危险废物);或(4)有可能导致州或地区的能源消耗大幅增加。
碳水化合物的定性分析。碳水化合物的定性和定量测试。碳水化合物的定性和定量分析。碳水化合物定量分析。碳水化合物PDF的定性分析。碳水化合物是在动物和植物中都可以发现的复杂分子。它们的特征是其化学配方cn(H2O)N,其中n代表碳原子和水分子的数量。这些化合物通过氧化提供了能量,并用作储存的化学能源。除了作为主要能源外,碳水化合物还在细胞成分的合成中起着至关重要的作用。碳水化合物分为三个主要类别:单糖,二糖和多糖。单糖由包含3至7个碳的单个碳水化合物分子组成,而二糖是通过将两个单糖连接在一起而形成的。多糖由许多单糖单元组成。当我们食用碳水化合物时,它们在我们的体内分解,最终形成水和二氧化碳,释放出用于各种身体功能的能量。多余的碳水化合物可以在肝脏中存储为糖原或转化为脂肪。植物通过光合作用产生碳水化合物,该过程利用来自太阳的能量来从水和二氧化碳中构建这些化合物。单糖结构可以使用Fischer投影来表示,这显示了分子中每种手性碳的立体化学。这有助于轻松比较单糖结构。例如,葡萄糖和半乳糖是两个糖,它们的名称不同,因为它们在碳4。在溶液中,大多数单糖作为环状半含量存在,其中醛或酮基在同一分子的另一端与一个羟基反应。有两种主要形式的D-葡萄糖:α-D-葡萄糖和β-D-葡萄糖。这些结构在解决方案中不断互相互连。化学测试可以确定糖是否还原。还原糖含有一个游离的异源碳,该碳可以与Fehling的试剂(如Cu2+还原引起的红色变红)反应。Barfoed的测试相似,但与各种糖的反应不同。Seliwanoff的测试涉及脱水,并形成带有酮的樱桃红色复合物,而Aldose的反应较慢。化学测试还可以识别特定类型的碳水化合物。例如,碘形成带有淀粉的蓝色复合物,表明淀粉糖或其他螺旋盘绕的多糖。产生的颜色取决于多糖的结构和碘溶液的强度/年龄。与酵母配对时,许多碳水化合物可以进行发酵,从而产生乙醇和二氧化碳作为副产品。C6H12O6→2 CH3CH2OH + 2 CO2(G)发酵用于酿造啤酒和葡萄酒,在这里生产的酒精可作为所需的结果。但是,并非所有糖都可以用酵母作为食物来源。注意:有些测试需要热水浴。确定在存在酵母菌的情况下发酵哪些糖,哪些糖不得进行,您将进行一系列测试。发酵的证据将表现为二氧化碳气体的进化。在每个测试中,一个含有酵母和要测试的糖的溶液将被困在倒置的小试管中。几天后,检查测试管中的气泡形成。如果存在,则表明发酵发生。二糖和多糖暴露于酸或特定酶时可以水解。当水解二糖时,其产物是单个单糖。多糖在水解后产生葡萄糖,麦芽糖和葡萄糖的混合物。如果完全水解,则产品将是葡萄糖。在本实验中,您将水解蔗糖,然后测试是否存在还原糖。您还将水解淀粉并同时测试减少糖和淀粉。实验过程中始终戴安全护目镜。在实验的结论中,将所有废物处理在指定的无机废物容器中。在热板上加热几个烧杯,在需要时准备好它们。1。发酵:本部分描述了如何制备测试。大型测试管已被标记并填充了要测试的每个溶液。将一个小试管倒置在每个大型试管中,使其完全填充溶液。记录演示开始的日期和时间。接下来是Barfoed的测试!大型试管的每个顶部都被覆盖并倒置,以便内部的小试管完全充满溶液。加入并溶解到每个试管,0.5 g的碳水化合物样品,50 mL实验室水和0.02-0.03 g的酵母菌。检查小型测试管中的任何气泡。如果存在,则表明在反应过程中产生了气体,在管中发生了表示发酵。您的任务是进行一些观察!在实验的这一部分中,您将测试已知的葡萄糖,果糖,乳糖,蔗糖,淀粉的样品,并将其与未知成分样品进行比较。您将使用三种不同的测试:Fehling的测试,Barfoed的测试和Seliwanoff的测试。在Fehling的测试中,您将与6 ml溶液B混合6 mL溶液A,以创建Fehling的溶液。然后,在包含未知样品的每个试管中加入2 ml的该组合溶液,以及一些已知样品进行比较。将管子在沸水浴中加热5分钟,并观察发生的事情。如果您看到红色沉淀形式,则表示正反应。您将在每个试管中将每种溶液与3 mL barfoed的试剂混合1毫升。然后,将管子在沸腾的水浴中加热5分钟,观察发生的事情。如果看到红色沉淀形式,它也表示正反应。请注意沉淀出现需要多长时间。最后,您将使用Seliwanoff的测试!然后,加入4毫升Seliwanoff试剂并充分混合。记录您的观察结果!5。6。将每种溶液添加10滴以在包含未知样品的每个试管中测试,以及一些已知样品进行比较。在沸腾的水浴中加热管子,直到看到颜色变化(这可能需要大约10分钟)。记住要仔细观察并记录您做出的任何结果或观察结果!碘测试:我们将测试葡萄糖,果糖,乳糖,蔗糖,淀粉,水,并将其与未知成分样品进行比较。首先,将每种溶液的1 ml添加到7个标记的测试管之一中。然后,将3滴碘溶液添加到每个管中并混合。比较颜色并记录您的观察结果。水解:该部分分为三个部分(6A-C)。在6A中,我们将在试管中将0.5 mL 3 M HCl与5 ml的1%蔗糖溶液混合。在沸腾的水浴中加热20分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。接下来,将1毫升Fehling溶液A与1 mL Fehling溶液B混合,然后将其添加到包含水解的蔗糖的小试管中。在沸水浴中加热几分钟。记录您的观察结果。6b:在这一部分中,我们将在试管中将3 ml的1%淀粉与0.5 mL HCl混合。在沸水浴中加热10分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。在沸水浴中加热几分钟。2。接下来,将1毫升Fehling溶液A与1 mL Fehling的溶液B混合,然后将其添加到包含水解淀粉的小试管中。记录您的观察结果。6C:使用步骤6B的剩余溶液,将1 mL传递到小试管中,并加入3滴碘溶液。记录您的观察结果,并将它们与尚未水解的淀粉的结果进行比较。发布实验室问题:1。基于实验每个部分的结果,确定您的未知组件并解释原因。将蔗糖的Fehling测试结果与水解蔗糖的测试结果进行了比较。您的结果告诉您什么?3。重写文本:讨论了Fehling对淀粉和水解淀粉的测试的结果。此外,在淀粉和水解淀粉上进行的碘测试进行了比较。阐明了“还原糖”的概念。此外,检查了Seliwanoff测试和碘测试中的水的目的。绘制了α-D-Fructose和β-D-Fructose的结构图。 分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。 关于碳水化合物的结论是根据其反应得出的。 对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。 最后,检查所有二糖都不会使用酵母进行发酵的原因。绘制了α-D-Fructose和β-D-Fructose的结构图。分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。关于碳水化合物的结论是根据其反应得出的。对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。最后,检查所有二糖都不会使用酵母进行发酵的原因。(注意:重写文本在应用“添加拼写错误(SE)”方法时保持文本的原始含义和结构。)