本评论文章全面探讨了化学工程领域中电透析技术的重大进步,并提出了整体概述,涵盖了基本原理,膜材料和制造技术,操作参数以及广泛的应用。与以前的研究经常将重点缩小到ED的特定方面不同,这项工作综合了全球进步,弥合了各种研究主题之间的差距,以提供对当前趋势和未来方向的一致理解。是由电势驱动的一种基于膜的分离过程,对于其在水纯化,淡化,资源回收等方面的应用至关重要。本评论深入研究了离子交换膜的演变,突出了材料的创新,以及提高膜选择性和效率的制造技术的进步。它还仔细检查了操作参数对ED系统性能的影响,解决了离子泄漏,膜结垢以及选择性和电导率之间的平衡等挑战。讨论了过程强化和系统优化策略,揭示了最近的发展如何促进能源效率,可伸缩性和可持续性。审查进一步扩展到从环境管理到能源和水透明产业的领域的ED的新兴应用,并由证明实际实施的案例研究强调。通过这种全球视角,它旨在促进ED在应对一些最紧迫的挑战时的进一步探索和应用。最终,本文强调了ED技术的发展所需的多学科方法,这提出了未来研究的途径,以优先考虑环境影响,经济可行性和技术创新。
用于燃料和化学商品生产的高温太阳能热化学过程已被研究了几十年,其可行性现已得到证实。然而,工业部署受到限制,主要原因之一是太阳能的易变性阻碍了先验的昼夜连续太阳能过程运行。尽管如此,太阳能间歇性现在在聚光太阳能 (CSP) 电力生产中得到了很好的管理。事实上,高达 600°C 的热存储已被证明,CSP 电力具有基载能力。然而,除了电力之外,供热是工业的主要需求。本文回顾了最近在高温太阳能热化学过程 (>600°C) 连续运行领域发表或获得专利的研究。目前,人们强烈致力于昼夜太阳能过程运行,因为它可以提高此类技术的耐用性、产品质量、效率和经济性。事实上,工业过程主要是连续的,每天的启动和关闭严重限制了太阳能驱动过程的生产能力,这是扩大规模的主要障碍。本文首次对昼夜连续高温太阳能过程进行了回顾和分类。报告的研究成果展示了该领域的巨大创新活动以及迄今为止研究的各种选择。主要成果表明,通过混合或热能储存,可以实现持续供热。
南部海洋冰范围最近发生的严重波动要求迫切需要更好地了解海冰内发生的季节性物理和生物地球化学(BGC)过程。海冰受到温度,风模式和海洋盐度等多种环境因素的影响。海冰微观结构是高度复杂的,由固体冰基质和液体间质盐水夹杂物组成。微生物群落发现盐水夹杂物营养丰富的栖息地,可在冬季恶劣的冬季生长和生存。微生物群落的生长或光合速率取决于各种环境因素,例如温度,阳光,盐水盐度和养分的可用性。虽然卫星观测和大规模建模为大规模(> 1 km)的这些过程提供了更好的了解,但仍然存在差距,这在小规模过程(如冰冻及其耦合到生物地球化学)等小型过程的确切时间描述中仍然存在差距。在本文中,在宏观(≈1m)上开发了多孔介质(ETPM)的数学框架(ETPM)对热力学一致的冻结过程的建模。在1D微观(≈0.1mm)模型上解析了孔和树突状模式的形成,并将孔面积升级到宏观尺度上,以调节冰的生长速率。藻类生长是使用N-P单一营养素和浮游植物(N-P)生长模型的模型。当前的工作与参考文献更进一步。[1],通过微观质量分数和盐水之间的微观质量交换改进,通过部分微分方程对散装盐度演变的描述,以及用于初级生产和营养动力学的普通微分方程。
随着物联网(IoT)设备,云计算和其他数字技术的整合到化学过程中,网络攻击的复杂性和隐身性已增加。为了减轻传感器网络攻击在化学过程中的影响,这项工作提出了一个框架,该框架开发了基于物理学的机器学习(PIML)基于基于物理的检测器和弹性控制器,以改善网络攻击下非线性系统的闭环性能。PIML检测器是通过定制的损失函数构建的,该损失函数将网络攻击的领域知识集成到训练过程中。此外,在检测攻击后,开发了知识引导的扩展卡尔曼滤波器,以提供估计的弹性控制状态,以便在用冗余传感器替换之前。一个化学过程示例用于说明提出的基于PIML的检测和弹性控制方法处理网络攻击的应用。
微生物调节生物地球化学循环,并在土壤,vadose区和地下水栖息地内起各种功能(例如Chi等,2018,2022; Zhang et al。,2021; li et al。,2022)。这些微生物的组成和功能可以受到生物和非生物因素的影响,而生物和非生物因素又影响了生化过程和生态系统功能(例如,Li等,2019; Chi等,2021)。因此,研究这些栖息地及其与多种微生物途径的联系,尤其是涉及物质循环,污染控制和碳中立的途径,这具有显着兴趣。因此,为了开发一个健康稳定的可持续生态系统,该研究主题集中在土壤 - 瓦多德地区 - 地园区水域中的微生物生态/生物地球化学过程上。本研究主题的目标是:(1)在这些栖息地中汇编有关微生物生态过程的新研究; (2)强调实现可持续过程的可能性。本研究主题中包含的文章经过了仔细的审查,并接受了以下11篇文章。
Richard M. Felder 是北卡罗来纳州立大学 Hoechst Celanese 化学工程名誉教授。他获得了纽约城市大学的工学学士学位和普林斯顿大学的化学工程博士学位,在加入北卡罗来纳州立大学任教之前,他曾在原子能研究机构(英国哈威尔)和布鲁克海文国家实验室工作。他撰写或与他人合作撰写了 200 多篇有关化学过程工程和工程教育的论文,并在美国和国外的工业和研究机构和大学举办了数百场研讨会、讲习班和短期课程。自 1991 年以来,他一直共同指导美国工程教育协会赞助的国家有效教学研究所。他是《化学工程》出版委员会的成员,自 1988 年以来一直为该期刊撰写“随想”专栏。他获得的荣誉包括 RJ Reynolds 教学、研究和推广卓越奖、AT&T 基金会工程教育卓越奖、化学制造商协会国家催化剂奖、ASEE Chester F. Carlson 工程教育创新奖、ASEE 化学工程部教学奖学金终身成就奖,以及因其工程教育出版物获得的多个国家和地区奖项,其中包括 1988、1989、1996 和 2003 年 ASEE William J. Wickenden 杰出论文奖。他的许多出版物可以在 Ronald W. Rousseau 找到,他是 Cecil J.“Pete”Silas 捐赠主席,也是佐治亚理工学院化学与生物分子工程学院的院长。他是的执行编辑、的出版委员会成员和的主题编辑;他曾担任 Wiley 化学工程系列和 的顾问委员会成员、 的咨询编辑和 的副主编。他是 (Wiley, 1987) 的主编。除了致力于本科教育之外,他还是分离科学与技术领域的活跃研究者。他的工作涉及许多主题,最近关注的是晶体成核和生长的基础以及晶体科学与技术的应用。他对化学分离技术领域的贡献获得了美国化学工程师学会 (AIChE) 分离部门的 Clarence G. Gerhold 奖。他是美国化学工程师学会和美国科学促进会的会员。他毕业于路易斯安那州立大学,并当选为 LSU 工程杰出人物。他曾担任化学研究委员会主席、AIChE 董事会成员和 AIChE 出版委员会主席。博士。费尔德和卢梭共同获得了美国化学工程师学会颁发的 2002 年沃伦 K. 刘易斯化学工程教育贡献奖。