CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
电诊断医学中最困难的地区[1]。从理论上讲,具有纯净电势的神经性EMG,正锋利的波,高振幅和持续时间运动单位电位(MUP)和减少的干扰模式,应与含有较小的短效率的较小的,短效率的多重浓度和全部干扰模式的肌病明显区分。实际上,定性EMG分析的诊断产率是异常/肌病和神经性/肌病之间的区别,令人失望的很低。在过去的几十年中,已经开发了几种定量EMG(QEMG)方法,例如转向振幅分析,以提高EMG的诊断产率,但是到目前为止,各种QEMG技术的敏感性和特异性都与视觉检查相似[2],[3]。同样,另一种称为聚类指数方法的定量技术对神经源性产生的敏感性为92%,对肌性患者的敏感性为61%[4]。对纳入体肌炎患者(IBM)(肌病)的EMG解释特别具有挑战性,因为它可能包含肌病性和神经起源特征[5]。由于IBM也可能在临床上模仿运动神经元疾病,因此对EMG的不适当解释可能导致错误的诊断。对错误标记的IBM患者的回顾性研究发现,常规EMG通常指向神经发生障碍:它显示出纯正和正尖波,以及大多数错误标记患者的多重多重性长期神经源性MUP的过量[6]。这是非常不幸的,因为肌萎缩性侧索硬化症(ALS)是一种疾病,是一种进行性致命疾病,而预期寿命在IBM中并没有显着影响[7]。大多数QEMG方法已经出版了几十年前,是基于关于MUP形态和生理学的假设。计算机处理能力和机器学习技术的最新进展实现了一种大数据方法,该方法可以处理大量功能,而没有任何关于信号性质的基本假设。我们以前已经表明,这种方法是为汽车行业开发的,但适用于脑电图(EEG)信号,可以
随着人工智能 (AI) 技术在社会中的应用日益广泛,了解人工智能可能以何种方式加速或阻碍气候进程以及各利益相关者如何引导这些发展至关重要。一方面,人工智能可以促进能源、制造业、农业、林业和灾害管理等各个领域的气候变化缓解和适应战略。另一方面,人工智能还可以通过有利于高排放行业或推动消费者需求增加的应用以及与人工智能本身相关的能源使用,导致温室气体排放增加。在这里,我们简要概述了人工智能与气候变化的多方面关系,并建议采取政策杠杆,使人工智能的使用与气候变化缓解和适应途径保持一致。
摘要:CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 经典分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这证明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持了识别机制,并提出了基因组编辑和重组的常见催化策略。总体而言,此处描述的非目标DNA裂解催化解决了CRISPR-CAS9生物学中的基本开放问题,并为提高Cas9酶的催化效率和金属依赖性功能提供了宝贵的见解,这是基于基因组编辑工具的开发的基础。关键字:基因组编辑,QM/mm,自由能模拟,蛋白质/核酸相互作用,非编码RNA,磷酸二酯键裂解,镁辅助催化催化,CRISPR-CAS9■简介
不当使用 AutoML 的公司——其中最严重的问题是,当 AutoML 在其专业范围之外使用时,可能会产生错误的输出、未发现的偏见以及缺乏可解释性。正是这些危险引起了数据科学界的担忧。但是,如果组织能够注意到这些问题,并就 AutoML 的潜力与数据科学家进行公开讨论,那么他们不仅能够更好地应对当前的人才缺口,还能让数据科学家腾出时间去做他们真正感兴趣的任务。在前面提到的制造公司,数据科学家很高兴他们不再需要在当地工厂运行每一项标准化任务,而是可以专注于真正需要他们深厚专业知识的任务。
MADRAS 系列使操作员能够快速下载和分析飞行数据,以进行安全和预防性维护调查。这些设备与 FA2100 驾驶舱语音记录器 (CVR) 和飞行数据记录器 (FDR) 共享相同的地面支持设备。这些数据不仅可以帮助事故调查人员,还可以提供数千个数据参数,用于飞行数据监控 (FDM)/飞行运行质量保证 (FOQA),支持航空公司的标准操作程序 (SOP)。
所述资源可供专业开发人员应用 TI 产品进行设计使用。您将对以下行为独自承担全部责任: (1) 针对您的应用选择合适的 TI 产品; (2) 设计、 验证并测试您的应用; (3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。 TI 对您使用 所述资源的授权仅限于开发资源所涉及 TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它 TI 或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等, TI 对此概不负责,并且您须赔偿由此对 TI 及其代表造成的损害。
摘要:直升机紧急医疗服务 (HEMS) 车辆需要特殊配置的机舱,以支持快速将救援队运送到紧急情况现场并将患者送回满负荷的医院,同时使用专门设计但最先进的生命支持设备维持患者的健康。服务的有效性和安全性可能会受到振动水平的挑战,可以通过在机舱内最佳地定位受影响的受试者来改善。然而,机身的裸露动态响应可能导致对振动性能的错误评估,因为飞行员、机组人员、患者和医疗设备通过他们与结构的接口与直升机动态交互。因此,HEMS 车辆的低振动布局优化需要能够有效地分析大量候选耦合直升机接口受试者配置,在模型细节和计算成本之间达到适当的权衡。这项工作提出了一种有效的医疗直升机振动等级,以通过最小化机舱内部加速度来支持减少振动危害。该工具能够对高保真旋翼机气动伺服弹性进行建模,轻松连接表示人、设备及其界面动力学的公式,并计算所得耦合模型的振动性能。该方法适用于中型直升机
简介 通过分析现场水样可以确定水体内的悬浮固体浓度 (SSC)。尽管这种方法可以得到准确的测量结果,但是结果是基于点的,并且仅在有限数量的采样位置可用。如果必须将测量结果在较大的区域进行空间外推,则可能会引入相当大的误差 (Nanu 和 Robertson,1990)。通过增加采样密度可以提高估算的 sscs 的准确性,这使该方法过于耗时且成本高昂。但是,如果与遥感数据相结合,这种现场采样方法对于量化 ssc 和研究其在水体内的空间分布模式非常有用。能否准确地从遥感数据量化 SSc 取决于数据中记录的 ssc 与其反射率之间的相关性。如果 ssc 小于 100 mgl-I,则在可见光和近红外波长范围内,这两个变量之间存在正相关性(Forster 等,1994;Lyon 等,1988;Mertes 等,1993;Ritchie 和 Cooper,1988;Tassan,1993)。如果 ssc 较低且范围较小(20 至 50 mgl-I),则这两个变量之间的关系为非线性(例如对数)(Xia,1993)。遥感数据中 ssc 与其数字值 (DN) 之间已建立的关系受多种因素的影响,例如波长、视角和