这项研究是针对潜在的硫酸氧化细菌(SOB)的隔离,筛选,鉴定和培养条件优化(pH,温度,硫代硫酸盐浓度和孵育期),以降低位于东部Kalimantan,Indsanantan,Indsanantan,Indsaneaia的Samarinda的各种AGES水中硫后矿山中的硫浓度。这项研究中使用的池塘为池塘<5岁,> 20岁。获得的75种细菌分离株获得的研究可以增加硫代硫酸盐肉汤培养基的pH值。在九种细菌分离株中,三个分离株KT1.8,KT1.9和KT1.13具有降低硫浓度的培养基浓度的最高效力,为6%,148%和101%。基于16S rDNA序列的相似性,KT1.8,KT1.9和KT1.13分离株被鉴定为Priestia Qingshengii HLS-7(98.9%),辛基菌Siyangensis ds48(97.6%)(97.6%)和PSEUDOMONAS PUTIDASOMONAS PUTISAS CFIDASCFIDASCFIDASCFIDASCFBBBBENSISSISSISSISSISSISSISSISSISSISSISSISIS。随着Kt1.8 = 146x10 14细胞/mL的生长,在30°C温度下,在30°C温度下,在pH 6的三个潜在SOB分离株在30°C的温度下生长更好。 kt1.9 = 81x10 7单元/ml;和kt1.13 = 33x10 7 cell/ml;硫浓度降低KT1.8 = 43.57%; KT1.9 = 43.57%;和KT1.13 = 42.48%。在包含
依赖电压的阴离子选择通道蛋白1(VDAC1)是线粒体外膜中最丰富的蛋白质,在控制肝细胞癌(HCC)进展中起着至关重要的作用。我们先前的研究发现,胞质分子伴侣热休克蛋白90(HSP90)与VDAC1相互作用,但是HSP90的C末端和N末端结构域对VDAC1寡聚物形成的影响尚不清楚。在这项研究中,我们专注于Hsp90的C末端结构域对VDAC1低聚,泛质国家和VDAC1通道活动的影响。我们发现HSP90 C末端结构域抑制剂Novobiocin促进了VDAC1低聚,细胞色素C的释放和激活的线粒体凋亡途径。原子粗粒子建模模拟揭示了HSP90α稳定的VDAC1单体的C末端结构域。将纯化的VDAC1重构为平面脂质双层,斑块夹的电生理实验表明,HSP90 C末端抑制剂Novobiocin通过促进VDAC1寡聚化增加了VDAC1通道电导。线粒体泛素化蛋白质组学的结果表明,Nokobiocin治疗后VDAC1 K274单泛素化显着降低。VDAC1(K274R)的位置定向突变弱的HSP90α-VDAC1相互作用和VDAC1寡聚的增加。综上所述,我们的苏尔特表明,HSP90 C末端结构域的抑制通过减少VDAC1 K274单素化来促进VDAC1寡聚和VDAC1通道电导,从而为HCC的线粒体靶向HCC靶向HCC提供了新的观点。
胶质母细胞瘤是中枢神经系统最常见、侵袭性最强的原发性肿瘤,预后较差。目前的金标准治疗方法是手术切除,然后结合放疗和化疗。主要化疗药物替莫唑胺 (TMZ) 的疗效取决于 O6-甲基鸟嘌呤 DNA 甲基转移酶 (MGMT) 的 DNA 甲基化状态,该酶已被确定为胶质母细胞瘤患者的预后生物标志物。临床研究表明,MGMT 启动子高甲基化的胶质母细胞瘤患者对 TMZ 治疗的反应更好,总体生存率显著提高。因此,在本研究中,我们使用 CRISPRoff 基因组编辑工具介导 MGMT 启动子区域内的靶向 DNA 甲基化。携带与甲基转移酶 (Dnmt3A/3L) 结构域融合的 CRISPR 失活 Cas9 (dCas9) 的系统通过靶向 DNA 甲基化下调 TMZ 耐药人类胶质母细胞瘤细胞系中的 MGMT 表达。 MGMT 表达水平的降低逆转了 TMZ 耐药性胶质母细胞瘤细胞系中的 TMZ 耐药性,导致 TMZ 诱导的剂量依赖性细胞死亡率。总之,我们证明了靶向 RNA 引导的 MGMT 启动子甲基化是一种有希望克服化学耐药性和改善 TMZ 在胶质母细胞瘤中的细胞毒性作用的工具。
摘要:百里香和香果酚是精油(EOS)的一些最重要和使用的组成部分;它们进行了广泛的研究,文献中有很多数据可用。它们在2005年至今的文献中发现的最小抑制浓度(MIC)值用于评估对酵母,霉菌,霉菌,革兰氏阳性细菌和革兰氏阴性细菌的生物活性,以及某些细菌/血清型的生物活性(Salmonella sp。单核细胞增生,金黄色葡萄球菌,表皮等)发现两种化合物和经测试物种之间可能存在的共同趋势或差异。结果非常有趣,并指出某些细菌物种(150-400 mg/l)的百里香和葡萄丙醇的麦克风范围是一个共同范围,但对于此广义陈述,有一些例外。此外,统计数据还指出,细菌可能会经历均匀的(S. epidermidis,E。Coli O157:H7)或异质趋势(例如,沙门氏菌sp。)取决于可能的亚种或不同的实验设置。此外,本文提出,对于有效使用EOS,应该解决一些缺点和问题,这是微生物之间的强烈可变性,并且缺乏标准方案和参考菌株。
摘要:头颈部鳞状细胞癌 (HNSCC) 的治疗方案通常包括顺铂和放射疗法,但受到毒性的限制。我们已经确定从长叶酸浆中天然提取的三乙酸三乙酸酯 (WGA-TA) 是靶向 HNSCC 的先导化合物。我们假设将 WGA-TA 与顺铂结合使用可以降低顺铂的剂量,并降低其毒性。用 WGA-TA 和顺铂处理 HNSCC 细胞系。用药物治疗后,通过 MTS 测定确定细胞活力。使用 CompuSyn 计算组合指数。通过蛋白质印迹法测量了涉及靶向翻译起始复合物、上皮-间质转化 (EMT) 和细胞凋亡的蛋白质的表达。使用 Boyden-chamber 测定法测量侵袭和迁移。单独用 WGA-TA 或顺铂处理 MDA-1986 和 UMSCC-22B 细胞系 72 小时,导致细胞活力呈剂量依赖性下降。顺铂与 WGA-TA 联合使用,从 1.25 µ M 顺铂开始,导致显著的协同细胞死亡。与 WGA-TA 联合治疗可降低顺铂剂量,同时保持翻译起始复合蛋白的下调、细胞凋亡的诱导以及迁移、侵袭和 EMT 转变的阻断。这些结果表明,将低浓度的顺铂与 WGA-TA 联合使用可为 HNSCC 提供更安全、更有效的治疗选择,值得进行转化验证。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
人工智能(AI)使机器能够执行以前仅与人类思想相关的认知功能(Rai,Constantinides和Sarker,2019年)。管理学者认为AI改变了竞争优势的来源(Daugherty&Wilson,2018年,第214页; Davenport&Kirby,2016年,第204页),但就这种变化的发生方式提供了对比的观点。有人假设AI替代了人类的认知能力(Balasubramanian,Ye和&Xu,2021年),例如,当机器取代了股票投资中的银行家(Noonan,2017年),代替人才招聘的管理人员(Noonan,2017年)(Chamorro-Premuzic,Polli,Polli,Polli和Dattner,2019年),并受到治疗的治疗。其他人认为,当银行家,经理和医生与机器合作进行公平投资(Marraion,2017年),人才招聘(Hook,2017年)和医疗治疗(Topol,2019年)时,AI的补充而不是替代人类的认知能力(Murray,Rhymer和Sirmon,2021),2021年)。基于资源的视图(RBV)描述了资源与竞争优势相关联的理论机制(Barney,1991)。它将人类的认知能力描述为重要的优势来源,因为这些功能是异质分布,供应量有限且难以模仿的。因此,当管理者将它们用于战略决策和解决问题时,这种功能会导致绩效差异(Helfat&Peteraf,2015; Kunc&Morecroft,2010)。RBV对AI采用如何影响决策的竞争优势的预测尚无定论。因此,AI有可能替代当AI替代人类的认知能力时,RBV期望这些能力提供给侵蚀的优势(Peteraf&Bergen,2003年)。这是因为作为一种技术资源,AI的边际繁殖成本接近零,几乎没有模仿障碍(Brynjolfsson&McAfee,2014年,第31页)。Conversely, if AI complements humans' cognitive capabilities, the RBV expects it to generate advantages (Argyres & Zenger, 2012), because, as a widely applicable technology, AI enables the creation of unique bundles of previously unrelated resources — such as physicians' expertise and AI's machine prediction (Agrawal, Gans, & Goldfarb, 2018, p. 108).这些不确定的预测来自AI的独特特征。与先前的技术相反,AI使机器能够自主学习和行动(Balasubramanian等,2021),这反过来允许这些机器在决策和解决问题中与人类相互作用(Murray等,2021年)。
通过在体内大规模地同时进行超突变和选择,微生物宿主中的酶和其他蛋白质的连续定向进化能够超越经典定向进化,并且只需极少的手动输入。如果目标酶的活性可以与宿主细胞的生长相结合,那么只需选择生长就可以提高活性。与所有定向进化一样,连续版本不需要事先了解目标的机制。因此,连续定向进化是修改植物或非植物酶以用于植物代谢研究和工程的有效方法。在这里,我们首先描述用于连续定向进化的酵母(酿酒酵母)OrthoRep 系统的基本特征,并将其与其他系统简要比较。然后,我们将逐步介绍使用 OrthoRep 进化主要代谢酶的三种方式,并以 THI4 噻唑合酶为例并说明获得的突变结果。最后,我们概述了 OrthoRep 的应用,这些应用满足了日益增长的需求:(i)改变植物酶的特性以便返回植物;(ii)改造(“植物化”)原核生物(尤其是外来原核生物)的酶,使其在温和的类植物条件下发挥良好作用。
组织特异性干细胞通过在生物体的整个生命中提供分化细胞的连续供应来维持组织稳态。分化/分化的细胞可以通过去分化恢复到干细胞的身份,以帮助维持干细胞池超越单个干细胞的寿命。尽管去分化对于维持干细胞种群很重要,但据推测它是肿瘤发生的基础。因此,必须严格控制此过程。在这里,我们表明,转化调节剂ME31b在防止果蝇男性生殖线的过量去分化方面起着至关重要的作用:在没有ME31b的情况下,精子症在频率较高的频率下将精子延伸到种系干细胞(GSC)中。我们的结果表明,过量的去分化可能是由于NOS的不正调,NOS是生殖细胞身份和GSC维持的关键调节剂。综上所述,我们的数据揭示了对去分化的负面调节,以平衡干细胞维持与分化。
卵巢癌是一种化学反应性肿瘤,对铂类/紫杉醇等标准疗法的初始反应率非常高。然而,大多数女性最终会出现复发,并迅速发展为化学耐药性疾病。治疗结束时卵巢癌干细胞 (OCSC) 的持续存在已被证明是导致肿瘤耐药的原因之一。在本研究中,我们证明长链非编码 RNA HOTAIR 在 HGSOC 细胞系中过表达。此外,与非 CSC 相比,OCSC 中的 HOTAIR 表达上调,HOTAIR 的异位过表达丰富了 ALDH + 细胞群,HOTAIR 过表达增加了球体形成和菌落形成能力。使用肽核酸-PNA3 ® 靶向 HOTAIR,通过破坏 HOTAIR 和 EZH2 之间的相互作用发挥作用,与 DNMT 抑制剂结合可抑制 OCSC 球体形成并降低 ALDH + 细胞的百分比。研究了使用 PNA3® 破坏 HOTAIR-EZH2 并结合 DNMTi 对 OCSC 作为异种移植体内启动肿瘤的能力的影响。HGSOC OVCAR3 细胞在体外用 PNA3® 处理,然后植入裸鼠体内。肿瘤生长、启动和干细胞频率受到抑制。总之,这些结果表明,阻断 HOTAIR-EZH2 相互作用并抑制 DNA 甲基化是根除 OCSC 和阻止疾病复发的潜在方法。