摘要:无细胞基因表达是研究定义最小环境中生物系统的重要研究工具,并且在生物技术中具有有希望的应用。开发控制无细胞表达的DNA模板的方法对于精确调节复杂的生物学途径并与合成细胞一起使用至关重要,尤其是使用远程,非损害刺激(例如可见光)。在这里,我们已经合成了蓝色的光活化DNA部分,这些DNA部分严格调节无细胞的RNA和蛋白质合成。我们发现,这种蓝色光激活的DNA可以与我们先前产生的紫外线(UV)光激活的DNA正交表达,我们用来生成双波长的无光控制的无细胞和栅极。通过将这些正交的光激活DNA封装到合成细胞中,我们使用了两个重叠的蓝色和紫外线模式,以对逻辑门提供精确的时空控制。我们的蓝色和紫外线正交光激活的DNA将为精确控制生物学和医学中的无细胞系统打开大门。■简介基因表达的精确控制具有广泛的应用,包括生物学研究,生物技术和医学。1缺乏控制工具的基因表达的一个区域是无细胞表达(CFE),它从DNA模板中产生功能RNA/蛋白质。cfe被广泛用于生物学,生物技术和合成生物学2,3作为研究基本生物学过程的研究工具,以最小的细胞样环境。304,5使用CFE系统阐明了几种重要的生物学机制,例如DNA复制,6,7遗传密码,8和mRNA Poly-A Tails的作用,9已被阐明。已经开发了大量不同的CFE系统10-12,现代系统提供高表达产量,多功能性,可伸缩性和可访问性。基于CFE逻辑门的生物传感器已被用来生成病原体13-15和小摩尔菌的便携式检测系统。16-18 CFE还允许对SARS-COV-2进行大规模疫苗接种工作所需的快速和高产量产生mRNA疫苗。19,20在脂质双层中的CFE系统的封装也已用于形成合成细胞,21-24允许对研究生物学过程的自下而上方法,例如细胞通信25-27-27和细胞周期28,29 Interro,并在体外并通过与活细胞相互作用在药物中使用未来的应用。
»温室气体排放影响:生物甲烷是一种多功能的可再生能量载体。它可用于多个最终用途领域,包括转运(道路,运输),供暖(用于行业和建筑物)和电力生产。生物甲烷可以直接取代这些领域中化石燃料的使用,从而有可能减少温室气体排放。此外,可以通过将肥料作为生物甲烷生产的原料来在很大程度上避免农业部门的逃避排放,从而提供了一种有价值的解决方案来支持为全球甲烷排放的努力(例如,作为全球甲烷质疑的一部分(作为全球甲烷质疑的一部分),旨在将全球甲烷排放量降低至少30%至2030级别,至少将3030降低到2030年。当通过厌氧消化处理其他领域的有机废物流(例如生物塑料)中,将实现类似的好处。最后,由于合成肥料的生产非常强(尤其是基于氮气的肥料,因为天然气用作原料和工艺燃料),因此,由于合成肥料的生产而替换合成肥料的使用也减少了温室气体的排放。
循环经济解决方案,用于低质量废料流的价值化、高回收率的材料再循环以及残渣价值化,以实现零浪费的长期目标(清洁钢铁伙伴关系)(RIA)
放松复制起源和DNA解旋酶的负载是染色体复制的启动。在大肠杆菌中,最小起源oric包含一个双链放松元素(欠款)区域和结合起始蛋白DNAA的三个(左,中和右)区域。左/右区域带有一组DNAA结合序列,构成了左/右DNAA子复合物,而中间区域具有一个单个DNAA结合位点,该位点刺激了左/右DNAA亚复合物的锻炼。此外,群集元素(tattaaaaagaa)位于最小oric区域外。左DNAA子复合物促进了由于暴露TT [A/G] T(T)序列的放松,然后结合到左DNAA亚复合物,稳定DNAB Helicase载荷所需的未能状态。然而,右DNAA亚复合物的作用在很大程度上不清楚。在这里,我们表明,左/右DNAA子复合物的应有的放松,而不是仅由左DNAA子复合物,这是由应有的末端次区域刺激的。一致地,我们发现了右DNAA子复合物 - 绑定的单链应育成区域和群集区域。此外,左/右DNAA子复合物独立地结合了DNAB解旋酶。仅对于左DNAA子复合物,我们表明该群集对于DNAB加载至关重要。体内数据进一步支持了右DNAA子复合物的Unwound DNA结合的作用。综上所述,我们提出了一个模型,其中右DNAA子复杂与UNWOUND应变动态相互作用,有助于适当的放松和有效的DNAB解旋酶负载,而在没有Right-DNAA子复杂性的情况下,在这些过程中没有在这些过程中进行群集的辅助,以支持重复的鲁棒性。
据估计,乳腺癌 (BC) 导致女性损失 1900 万伤残调整生命年 (DALY) [ 1 ]。发达国家的存活率很高,而低收入和中等收入国家每名受影响女性的死亡人数更高 [ 1 ]。GLOBOCAN 2020 数据报告,2020 年新诊断的 BC 病例数约为 230 万 [ 2 ]。根据目前的研究,到 2030 年,这一数字可能会增加到 2.7 [ 2 ]。2020 年,全球 BC 的死亡率与发病率比 (MIR) 为 0.3 [ 3 ]。MIR 显示癌症的五年生存率 [ 4 ]。从生物分子角度来看,雌激素受体 α (ER α )、孕激素受体 (PR) 和表皮生长因子 2 受体 (ERBB2,以前称为 HER2 或 HER2/neu) 三种分子的表达对于乳腺癌的诊断、分类和靶向治疗非常重要 [ 5 ]。70% 的侵袭性 BC 病例中有 ER α 的表达。雌激素激活 ER α 会诱导促癌细胞中的致癌途径。此外,PR 表达与 ER α 信号通路密切相关 [ 6 ]。20% 的 BC 病例中 ERBB2 分子过表达 [ 7 ]。抗 ERBB2 疗法是治疗此类侵袭性病例的首选方法 [ 8 ]。在三阴性 BC (Tn-BC) 中,这三种标志物均不在肿瘤中表达。 ERBB2 分子是 15% BC 病例的病因,并且存活率最低;然而,这种亚型的具体分子病理生理学仍不清楚 [9]。非侵入性 BC 的治疗基于从乳房中切除肿瘤和预防癌症转移的治疗。曲妥珠单抗抗 ERBB2 与化疗联合使用也可用于治疗 ERBB2 阳性 BC。对于 Tn-BC,化疗是首选方法。对于转移性 BC (m-BC),治疗的目标是延长生命并缓解疾病症状。手术、化疗、辅助疗法和靶向疗法(例如抗 ERBB2 抗体)相结合用于此类患者;然而,m-BC 主要是无法治愈的,目前的治疗方法具有不良后果 [10]。因此,许多科学家专注于间充质干细胞 (MSC) 及其产品(如外泌体)用于治疗
作者 D Ye · 2022 · 被引用 10 次 — 或睾丸。我们的研究表明,25 dpf 和 30 dpf 的幼年卵巢和睾丸在生物前体水平上存在差异。
我们专注于核心市场,并已建立领先地位。我们核心市场的收入池是实质性的,预计总可寻址市场收入约为 90 亿美元,并且由于对连接和数字应用的需求增加,增长速度高达个位数。我们帮助客户提高生产力,并为需要可靠连接服务的物联网等新生态系统提供服务。扩大和保持我们在核心市场的地位将带来进一步强劲的增长机会。
用等电子 BN 单元替换 CC 会产生极其相似的分子,但 BN 同类物通常具有不同的性质。1 由于这种现象,将 BN 掺入有机材料中已受到广泛关注,2 目前已成为一种修改物理和光电性质的成熟方法。3 该方法已应用于螺旋烯,发现将 BN 掺入[4]螺旋烯(例如 A 和 B,图 1)的螺旋骨架内可提高其相对于全碳[4]螺旋烯的荧光效率。 4 然而,将 BN 单元纳入更高阶[ n ]螺旋烯( n = [5],对构型稳定性必不可少)的螺旋骨架的研究还不够深入,据我们所知,迄今为止尚未报道过更高阶螺旋烯、[5] 和 [6] 螺旋烯( C 和 D )的简单 BN 类似物(迄今为止发表的所有例子都是 p 扩展 BN – 螺旋烯,例如 E )。5