包括造林,造林和恢复,土壤碳,去除生物炭,增强的岩石风化,bioccs,直接空气捕获,海洋碱度增强以及其他去除技术或开发中的混合方法。9从开始时,应为更高的耐久性卸下措施,持续效果,并在数千年的时间内测量耐用性。保持净零余额将需要与耐久存储的持久排放的持久排放相似。
摘要 - 这项研究的重点是分析Chaviña湿地的碳储存能力,目的是估计空中生物量中存在的碳储备。为此,使用0.25 m 2 Quadrat随机获得17个样品。随后,每个样品在60°C的温度为24至72小时的温度下在烤箱中进行干燥过程,直到它们达到恒定的重量为止。接下来,应用了Walkley和Black方法来确定每个样品中的碳含量。最后,进行了计算以获取存储在空中生物质中的碳库存。此外,进行了统计测试,以确定地上生物量中碳百分比与沼泽水平(高,中和低)存储在地上生物量中的碳之间的差异。获得的结果表明,三个沼泽水平之间的碳库存没有显着差异。此外,可以量化湿地生物量存储总计18 628 TC和隔离器70 904 TCO 2。这一发现将Chaviña湿地作为重要的碳储层的相关性。
图 1. Pt 电催化剂的设计和表征。(a)Pt 基 LCB 中 CO 2 转化过程示意图。(b)CO 2 、Li 和 Li 2 CO 3 在 Pt 表面不同取向上的吸附行为侧视图和(c)相应吸附能的比较。(d)Li 2 CO 3 在 Pt 表面不同取向上的分解能。(e)不同电极的 XRD 分析。(f)HTS 后电极的详细表面结构和 TEM 观察(比例尺 = 200 nm)。
二氧化碳羽状地热 (CPG) 发电厂可利用地质储存的二氧化碳发电。本研究介绍了一种灵活二氧化碳羽状地热 (CPG-F) 设施,该设施可利用地质储存的二氧化碳提供可调度电力、储能或同时提供可调度电力和储能——提供基载电力并使用可调度储能进行需求响应。研究发现,CPG-F 设施比 CPG 发电厂可提供更多的电力,但每日发电量较低。例如,CPG-F 设施在 8 小时内(8 小时-16 小时工作周期)产生 7.2 MW e,比 CPG 发电厂提供的电力高 190%,但每日发电量从 60 MW e-h 下降了 61% 至 23 MW e-h。 CPG-F 设施专为不同持续时间的储能而设计,其资本成本比 CPG 发电厂高 70%,但比大多数为特定持续时间设计的 CPG-F 设施高出 4% 至 27%,同时产生的电力比 CPG 发电厂多 90% 至 310%。CPG-F 设施旨在从提供 100% 可调度电力转换为 100% 储能,其成本仅比仅为储能而设计的 CPG-F 设施高出 3%。
1 IPCC,2018年:决策者摘要。在:1.5°C的全球变暖。一份IPCC特别报告,关于在工业水平高于工业水平及相关全球温室的全球变暖的影响,在加强全球对气候变化,可持续发展的威胁,可持续发展以及消除贫困的努力的反应的背景下[Masson-Delmotte,V.Pörtner,D。Roberts,J。Skea,P.R。Shukla,A。Pirani,W。Moufouma-Okia,C。Péan,R。Pidcock,S。Connors,J.B.R。Matthews,Y。Chen,X。Zhou,M.I。 Gomis,E。Lonnoy,T。Maycock,M。Tignor和T. Waterfield(编辑)]。 剑桥大学出版社,英国剑桥和美国纽约,美国,pp。 3-24。 https://doi.org/10.1017/9781009157940.001Matthews,Y。Chen,X。Zhou,M.I。Gomis,E。Lonnoy,T。Maycock,M。Tignor和T. Waterfield(编辑)]。剑桥大学出版社,英国剑桥和美国纽约,美国,pp。 3-24。 https://doi.org/10.1017/9781009157940.001剑桥大学出版社,英国剑桥和美国纽约,美国,pp。3-24。 https://doi.org/10.1017/9781009157940.0013-24。 https://doi.org/10.1017/9781009157940.001
二氧化碳(CO 2)通过矿化捕获,利用和储存(CCU)已被证明可减少独立植物中的温室气体(GHG)排放,而且还可以减少大规模气候供应链中的二氧化碳和储存率(GHG)的排放。然而,通过矿化实施大规模供应链为CCUS实施大规模的CCU,需要大量的金融投资,因此对其经济学有深刻的了解。目前的文献估计了独立植物的CO 2矿化经济学。CO 2矿化工厂具有特定的a)CO 2供应,b)固体原料供应,c)能源供应和d)产品市场,但工厂级成本估计并不能说明大型且潜在的共享供应链。在我们的研究中,我们通过在欧洲设计和分析CCU的成本优势供应链来评估矿化的经济学。我们的结果表明,避免了供应链中各个矿化厂的CO 2E减排成本范围为110至312欧元 /吨。通过矿化而提出的CCUS供应链可以避免欧洲的60吨Co 2e /年以2E减排成本可与CO 2捕获和地质存储相当。此外,我们确定了五个可以为CO 2矿化提供强大业务案例的地点。因此,分析显示了如何将CO 2矿化添加到欧洲的温室气体缓解组合中的途径。
●然后,在2016年,在伊利诺伊州费舍尔(Fisher Illinois)附近,从人们的天然气拥有的燃气存储设施中泄漏了甲烷进入Mahomet含水层。气体污染的井远至Mahomet(城市)。八年后,在新的供水的设计上花费了数百万美元,但受影响的居民仍然依靠瓶装水进行日常使用。
新型二氧化碳去除(CDR),例如具有碳捕获和存储的生物能源以及直接捕获碳捕获和储存的直接空气,以实现中国到2060年达到碳中准的目标,此外还需要快速排放减少和基于常规的CDR。正在取得显着的进步,以通过许多国家和自愿碳市场推进这些技术。然而,不确定性在其可伸缩性以及潜在的风险和权衡方面仍然存在,并具有其他可持续发展目标。中国可以基于现有知识来基于其国内环境扩展该国的CDR投资组合,同时确保减少排放工作不会受到危害。需要对CDR选项的绩效和影响进行全面评估,以帮助为政策决策提供信息。专门的研究,开发,示范支持以及稳健的测量,报告和验证系统对于加速扩大规模和引进私人投资至关重要。
CO 2排放每年继续增加。因此,要达到巴黎气候协议中设定的目标,有必要减少排放并实施CO 2捕获方法(Kammerer等,2023)。减少CO 2排放的必要性是许多国际法律所需的,包括适合55个包装(Bro园等人2023)和排放交易系统(EU ETS)的修订(Bordignon和Gamannossi degl'innocenti,2023年,Rogulj等人。2023)。在2022年,在通过部门全球发射CO 2中,在电能和发热部门中观察到最大的排放,占总排放量的39.7%(国际能源局,2023年)。在波兰,系统热量大约有1500万人使用,受监管的热量占家庭市场的42%(IzbaGospodarczaCiepłownictwoPolskie 2023)。在热量产生中使用的燃料的多元化正在缓慢发展。波兰市场仍然由化石燃料主导,化石燃料在2021年占热源中使用的所有燃料的69.5%(2020年至68.9%,2019年至71%,2018年 - 72.5%,2017年至74.0%)。在2021年,使用了14,0.89亿吨这种原料来实现许可的热工程需求(UrządRegulacji Energetyki 2022)。必须指出的是,除了燃烧过程外,煤炭的发掘对环境造成了重大负担(Chłopek等人。2021)。上述数据表明,CO 2排放的减少构成了一个严重的挑战。减少
在本文中,我们描述了一种新型 CPGES,称为地球电池扩展 II (EBE II),它使用大型表面储罐或气量计在接近大气压的条件下储存二氧化碳。这使得电池放电阶段最多可产生 260 MW e 的电力,而单靠 CPG 只能产生 2.5 MW e。此外,新的 CPGES 系统可以配置为生产可在接近大气压下升华的固体 CO2(干冰),提供 -78 °C 的散热器,可用于一般冷却目的,特别是用于从空气中低温捕获二氧化碳。反过来,这种二氧化碳可用于开发更多这样的 CPGES 系统。如果不需要散热器,可以通过增加(额外)级来优化涡轮机,从而增加电力输出而不会形成干冰。