在这项研究中,我们对在铜(CU)冶炼过程中生产的商业FGD石膏进行了全面检查,并通过探索这些金属不症状的分区和命运来研究其作为钙(CA)富含钙(CA)的材料的潜在用途。所得的碳化端产品显示出71.1%的碳酸钙(CACO 3)含量,具有相对较低的CO 2转化率,这可能归因于商业FGD-GYPSUM中金属杂质的存在。这些金属杂质中的大多数是碳酸过程的输入,源自母体FGD-gypsum矩阵。这导致FGD石膏内的离子强度增加,可能阻碍二氧化碳(CO 2)从气相到水相扩散。在CO 2转化的各个阶段,主要,次要和微量元素的形成分配和检查使我们能够提出四种影响碳化效率的潜在反应途径:(i)金属氧化物的形成,(ii)金属氧化物和氧化羟化物的产生,(III)(III)(iii)金属成分元素的开发(III)元素的开发(IIV)和(IIV)的发展。商业fgd-gypsum适合在非危害废物垃圾填埋场接受。但是,必须强调商业FGD-GYPSUM中的浸出值超过惰性范围和非危害废物标准。尽管碳酸盐端产品的大多数重金属浸出值保持在非危害限制以下,但从碳酸盐端产品中释放一些重金属浸出物可能会限制这些材料的重用选择。
EPA 不要求特定的起始年份或基准年份;应根据基础数据的可用性和支持制定温室气体目标来选择清单年份或时间序列起始年份。要涵盖的温室气体包括二氧化碳、氢氟碳化物、甲烷、一氧化二氮、全氟化碳和六氟化硫。
摘要 技术的快速进步和紧迫的全球挑战要求不断开发新的高效材料。全球研究人员正在探索超越当前使用技术和材料的创新技术和材料。在当代材料中,碳基石墨炔 (GDY) 因其在能源相关应用中的出色性能而脱颖而出,这要归功于其卓越的潜力和可调节的光电特性。GDY 是一种新型二维碳同素异形体,在碳家族中引起了广泛关注。GDY 与其他碳同素异形体的区别在于其独特的结构构型,具有 sp 2 和 sp 杂化碳原子。平面内杂化碳的这种拓扑排列具有高度共轭的特性,以及增强的电荷迁移和电子迁移率。本综述深入探讨了 GDY 的最新进展、特性和结构修改,重点是改进其在能源转换中的应用。具体来说,它为使用基于 GDY 的纳米催化剂进行光催化和电催化析氢和二氧化碳还原提供了宝贵的见解。
ClassNK 创新发展部认证部 * 1 《联合国气候变化框架公约》附件一缔约方年度清单报告指南(第 24/CP.19 号决定,附件)规定了七种温室气体(GHG):二氧化碳(CO 2 )、甲烷(CH 4 )、一氧化二氮(N 2 O)、氢氟碳化物(HFCs)、全氟化碳(PFCs)、六氟化硫(SF 6 )和三氟化氮(NF 3 )。
以下出版物Weng,Z.,Guan,R.,Zou,F.,Zhou,P.,Liao,Y.,Su,Z.,...&Liu,F。(2020)。一种高度敏感的聚多巴胺@杂化碳纳米纤维基纳米复合材料传感器,用于获取高频超声波。Carbon,170,403-413可在https://doi.org/10.1016/j.carbon.2020.08.030
摘要 为了设计用于治疗和诊断应用的药物输送剂,了解共价功能化碳纳米管穿透细胞膜和与细胞膜相互作用的机制非常重要。在这里,我们报告了聚苯乙烯和羧基封端聚苯乙烯改性碳纳米管的全原子分子动力学结果,并展示了它们在模型脂质双层中的易位行为以及它们将布洛芬药物分子输送到细胞中的潜力。我们的结果表明,功能化碳纳米管在数百纳秒内被膜内化,并且药物负载进一步提高了内化速度。负载和未负载的管都通过非内吞途径穿过双层的最近小叶,在研究的时间内,药物分子仍然被困在原始管内,同时仍然附着在聚苯乙烯改性管的末端。另一方面,羧基封端的聚苯乙烯功能化可使药物完全释放到双层膜的下层,而不会对膜造成损坏。这项研究表明,聚苯乙烯功能化是一种有前途的替代方案,并作为基准案例促进了药物输送。
c机械工程系,科罗拉多大学博尔德大学,博尔德,博尔德,美国80309,美国B再生资源和启用科学中心,国家可再生能源实验室,Golden,Co 80401,美国C催化碳转换和规模上心,美国国家可再生能源实验中心,GOLDENITY,GOLDENITY,GOLDENITY,GOLDEN,GOLDINED,GOLDINE CO 80401,美国
在西门子,我们为客户提供了他们所需的端到端解决方案,使他们变得更好,更快,更有利可图,更可持续性:自动化硬件,工业软件,工业知识和服务,使他们能够使整个产品和生产生命周期生命周期性,包括供应链,更有效,更可持续和可持续性。这包括分析和优化碳强度,为更长的产品生命周期和更高的资源效率创建循环模型,并改善人体工程学和安全性。