摘要:与聚合物复合材料中合成增强相关的环境挑战,例如非生物降解性和可回收性差,需要探索各种天然材料,尤其是从废物流中,以全面或部分替代此类增强。然而,这些天然纤维还提出了挑战,例如高吸水,低热稳定性和平均机械性能。为了避免这些问题,包含一种或多种类型的自然增强的天然纤维增强杂化复合材料正在增加研究兴趣。本文介绍了对天然纤维增强杂化复合材料的评论。综述了天然和合成纤维(杂化纤维)增强的热塑性和热热器。总结了纤维的特性以及所得的复合材料和加工技术。
摘要。纤维增强聚合物(FRP)的优化对于工程可持续的未来至关重要。本评论论文探讨了数字双胞胎(DTS)在增强合成和可持续性FRP的特征,性能和可持续性方面的潜力。dts为实时监控和预测分析提供了虚拟空间,并彻底改变了FRP生产的传统局限性。最近的案例研究,例如Fastigue项目和纤维增强热塑性塑料的进步,展示了DT在解决生产过程中解决问题方面的强大作用。本文还讨论了开发可持续的“绿色”复合材料的独特挑战,这些复合材料与可持续发展目标之间的生物降解能力之间取得了平衡。它突出了利用DTS仔细检查合成和天然FRP的制造过程的好处。现代DTS已经证明了优化这些材料的固化动力学和机械性能的能力。此外,诸如3D打印的连续碳纤维复合材料,过高的纤维增强热塑性塑料以及基于可回收的Elium®的复合材料等案例研究鉴定了DTS在增强FRP的可持续生产方面的能力。承认未来的挑战,建议将生产和可持续性指标整合到现代多层DT系统中,以实现整体利益。关键字:数字双胞胎,复合材料,纤维增强聚合物
在手动去角质期间使用的玻璃纸胶带,并帮助混合过程中施加的剪切力,以剥离效果。同时,纳米纤维素的表面亲水性羟基和(110)平面上存在的带电羧酸盐允许氢键键合到水中,并将其作为稳定的水分散体分散。尽管节奏CNF在帮助去角质和分散去角质的石墨烯方面具有有效性,但鉴于纤维素化学的多样性以及潜在的效果在促进石墨烯生产中,速度的高成本本身提高了替代纳米纤维素的需求。是硫酸化的纳米纤维素,它们既有阴离子,又有速度CNF,并且可以通过多种硫酸盐途径轻松产生。纤维素的硫酸化数十年来一直闻名,以产生水分性和由亲水性硫酸盐基团赋予的超级吸收性。14各种Cra纸浆,15,16棉,17和CNCS 18的水性硫酸盐和含钠的CNCS 18和Bisul bisul te产生了宏观大小的硫酸化纤维素,15,17 10-17 10 - 60 nm宽的CNF,16和200 nm diamemetion diamemety spheres or spheres或8 nm v。18冻干CNF 19
1羊毛,R。P.和O'Conner,K。M.,“聚合物中的裂纹愈合理论”,《应用物理学杂志》,第1卷。52(10),1981。2 Agarwal,V。,“分子迁移率在热塑性复合材料的巩固和键合中的作用”,博士学位论文,特拉华大学,1991年。3 Pitchumani,R.,Don,R。C.,Gillespie,J。W.和Ranganathan,S。,“具有原位合并的热塑性拖放过程的设计和优化”,《复合材料杂志》,第1卷。31(3),1997。4 Gillespie,J。W.和Bastien,L。J.,“无体热塑料融合键合接头的强度和韧性的非等热愈合模型”,《聚合物工程与科学》,第1卷。31(24),1991。
通过改变溶剂类型(乙醇或甲苯)和适合量来优化合成程序。总体而言,氨基官能化过程是有效的,并且对革兰氏阳性和革兰氏阴性细菌的活性非常出色,在所有情况下,实际上都完全消毒了。通过几种炭化技术研究了样品,表明溶液和纤维素类型对物理化学特征以及该过程的生态可持续性具有重大影响。尤其是,使用绿色乙醇和废物纤维素(相对于商业)的使用导致更高的适应性的剂量效率和最终材料的卓越热稳定性。有趣的是,木质纤维素SBH基质的存在变异的未经兴奋的化合物,尽管少量出现在抗菌活性方面,这也是至关重要的因素,假设残留的植物化学物质的作用。
发育和进化对大脑组织的影响是复杂的,但又是相互关联的,正如皮层区域扩张在这些截然不同的时间尺度上的对应性所证明的那样。然而,仍然不可能同时研究皮层区域连接的个体发育和系统发育,这可能比异速测量与大脑功能更相关。在这里,我们提出了一个新框架,允许将人类(成年人和新生儿)和非人类灵长类动物(猕猴)的结构连接图整合到一个共同空间上。我们使用白质束来锚定共同空间,并利用皮层连接模式对这些束的独特性来探测区域专门化。这使我们能够定量研究进化和发育尺度上连接的差异和相似性,揭示大脑成熟轨迹,包括早产的影响,并在不同的大脑之间转换皮层图谱。我们的研究结果为神经解剖学成像的综合方法开辟了新途径。
大型天然产物衍生分子,无法通过合成获得或处理。对于激酶靶标,另一种方法建立在对多种细胞激酶具有广泛特异性的亲和珠上。使用这些珠子与不同浓度的游离目标激酶抑制剂竞争可以实现靶标 ID。[6,7] 这种方法的一个缺点是它仅限于激酶抑制剂。较新的蛋白质组学方法,如热蛋白质组分析 (TPP) 和有限蛋白水解-小分子图谱 (LiP-SMap) 不需要化合物标记或固定。[8,9] 然而,这些方法需要对蛋白质组样本进行深度表征,因此需要较长的质谱测量时间。因此,基于 TPP 和 LiP-SMap 的靶标 ID 研究通常仅限于单一化合物。无向光交联是一种将小分子固定在亲和基质上的有吸引力的替代方法。 [10–14] 光交联反应具有化学和位点非选择性,因此无需事先衍生化即可为每个小分子分配不同的标记产物。这使得可以同时并行地以阵列形式固定多个小分子。这种阵列可以用单个标记蛋白质(分离的或全细胞蛋白质提取物)进行探测,以评估其与多个小分子(多种化合物,一种候选靶蛋白)的相互作用。[15] 光固定化小分子还可用于在全细胞蛋白质提取物中寻找相互作用伙伴,然后进行无偏靶标鉴定。[16–18] 然而,由于区分特定靶标蛋白质和非特定污染物具有挑战性,因此此类靶标鉴定实验迄今为止仅限于单一化合物(一种化合物,多种靶标蛋白质)。据我们所知,尚未描述无定向光交联用于并行高通量鉴定多种化合物(多种化合物,多种候选靶标蛋白质)的靶标。定量亲和纯化与质谱联用(q-AP-MS)利用定量来区分特定
这篇开放获取论文由 Scholar Commons 提供给您。它已被 Scholar Commons 的授权管理员接受并纳入论文和学位论文。如需更多信息,请联系 digres@mailbox.sc.edu 。
材料中,CNCs的排列起着至关重要的作用。到目前为止,已证明有几种有效的方法来排列CNCs,例如使用铸造蒸发法[6]、剪切力[7]、磁场[8]和电场。[9]除了上述方法所需的复杂装置或CNC薄膜的固有脆性外,最近出现了一种基于液体行为辅助策略的排列CNCs的新方法。[10]使用动态水凝胶体系来驱动CNCs的排列,其中CNCs的取向由外力产生。当纳米材料在空气干燥后相对位置固定时,就得到了颜色可调的CNC混合薄膜。另一方面,为了克服从天然原料中分离CNCs的问题,例如苛刻的条件或高能耗,[11]我们开发了一种新的可回收、选择性的碱性高碘酸盐氧化方法,从而可以高产率地制备PO-CNCs。 [12] 然而,PO-CNCs 上羧基含量相对较少,削弱了水凝胶前体中 PO-CNCs 的稳定性,并且由于许多其他溶解化合物的存在,可能导致 PO-CNCs 聚集,这也给将 CNCs 均匀嵌入潜在光学器件材料带来了普遍挑战。由于水凝胶中 CNCs 的取向依赖于剪切力,因此要求水凝胶具有较高的拉伸性和足够的韧性。由于缺乏有效的能量耗散机制,传统水凝胶通常机械强度差、拉伸性低。[13] 因此,人们已采用各种策略(包括静电相互作用 [14] 双网络结构 [15] 滑环连接 [16] 和疏水缔合 [17])进行交联和能量耗散,以提高水凝胶的性能。为了简化CNCs与聚合物基质之间的相互作用,避免所得光学材料中过多的变量,一种通过共价键交联的聚丙烯酰胺(PAAm)水凝胶具有高透明度和适用的机械性能等优势,是通过液体行为辅助法对PO-CNCs进行取向的有希望的候选材料。[18]中性水凝胶前体溶液可使PO-CNCs稳定存在。此外,其他光学材料,如金纳米棒(GNR),也可以适应这种水凝胶体系,其中表面等离子体共振(SPR)将诱导可见光区域的光吸收。[19]因此,这种水凝胶
