气候/天气/环境的数字预测是在气候变化时代的适当政策制定的重要来源。它需要一个耦合的建模系统,例如大气层地面化学;通过更好地估计参数和初始条件,可以提高其性能。数值气候/天气/环境模型不仅提供其未来状态,还提供给定网格大小的分析数据,这些数据在数据空隙区域中很有用。Recent efforts to improve regional climate/weather/environment prediction will be introduced as an integrated approach: estimating optimal parameter values, seeking an optimized set of parameterization schemes, combining optimizations of parameterization schemes and parameter values sequentially (i.e., opti-parameterization), and applying a hybrid ensemble-variational data assimilation through the coupled models (e.g., WRF-NOAH-MP和WRF-CHEM)和卫星数据。
摘要。洪水是法国地中海地区的主要自然危害,每年造成损害和致命。这些流量是由以时间和空间范围有限的特征的重大预言事件(HPE)触发的。已经开发了新一代的区域气候模型,在公里量表上已经开发出来,允许对对流的深度表示,并对诸如HPE等局部规模现象的模拟进行了明确表示。对流 - 渗透区域气候模型(CPM)几乎没有用于水文影响研究中,而区域气候模型(RCMS)仍然不确定地中海流量的实体投影。在本文中,我们使用CNRM-AROME CPM(2.5 km)及其驾驶CNRM-Aladin RCM(12 km)在每小时的时间表上模拟位于法国地中海地区的Gardon d'Anduze流域上的浮游。气候模拟通过CDF-T方法纠正。使用了两个水文模型,一个集体和概念模型(GR5H)和一个基于过程的分布式模型(CREST),该模型已使用CPM和RCM的历史和未来气候模拟强迫。与RCM相比,CPM模型证实了其更好地产生极端小时降雨的能力。该附加值在流量峰的繁殖中传播在流量模拟上。未来的预测在水文模型之间是一致的,但两个气候模型之间有所不同。使用CNRM-Aladin RCM,
摘要。了解模拟当前气候的区域气候模型(RCM)的能力,可为模型开发和气候变化评估提供信息。这是Narclim2.0的首次评估,这是由ECMWF重新分析v5(ERA5)驱动的七个天气铸造和研究RCMS的澳大利亚驱动的RCMS,其分辨率为20公里的分辨率为CORDEX-CMIP6 Australasia和Australia和东南澳大利亚的Contrection-Permitter-Permitter-Permitter-Permittit-Permitter-Permitter-Permitter-Permitter-Permitter-Permitter-permitts-permitmittits分辨率(4 KM)。对这七个ERA5 RCM(R1 – R7)的表现在模拟平均值以及极端最高和最低温度以及降水量中进行了评估,以针对年度,季节性和每日时间表的观察结果进行评估,并将其与先前一代cordex-CMIP5澳大利亚 - 澳大利亚-Ina-sia-Intera-Interim-Interim-Interim-Interim驱动的RCMS进行比较。ERA5 rcms与ERA-Interim rcms相比,均值和极高的脾气与ERA-Interim rcms的寒冷偏差大大减少,表现最佳的ERE5 RCM显示出较小的平均绝对偏见(ERA5-R5:0.54 K; ERA5-R1:0.81 K:分别为0.81 K),但没有为最低温度带来最低温度的改善。在20公里的决议中,ERA5 RCMS与ERA-Interim RCMS的平均降水和极端降水的改善主要在澳大利亚东南部显而易见,而在澳大利亚北部,强烈的偏见仍然存在。在澳大利亚东南部的对流 - 渗透量表上,ERA5 RCM合奏的平均降水的平均偏差约为79%,而模拟
抽象热浪(HWS)是强调社会和生态系统的高影响现象。预计在世界许多地区的气候中,其强度和频率将增加。尽管这些影响可能是广泛的,但它们可能会受到当地和区域特征(例如地形,土地覆盖和城市化)的影响。在这里,我们利用了在这些精细尺度上阐明热浪的影响所需的高分辨率建模的最新进展。此外,我们旨在了解新一代KM规模的区域气候模型(RCMS)如何调节在众所周知的气候变化热点上热浪的代码。我们分析了15个对流渗透的区域气候模型(CPRCM,〜2–4 km网格间距)模拟及其驾驶,对流参数化的区域气候模型(RCM,〜12-15 km网格间距)的驾驶,来自Cordex旗舰飞行员对对话的模拟。重点是评估实验(2000-2009)和具有一系列气候特征的三个子域。在HWS期间,通常在夏季,CPRCMS表现出比驾驶RCMS更温暖和干燥的条件。与CPRCM相比,RCMS中的热通量分配发生了变化,导致较高的最高温度,每天的峰值高达〜150 W/m 2。这是由CPRCMS中土壤水分含量降低5–25%的驱动,这又与更长的干咒长度(最高两倍)有关。确定这些差异是否代表改进是一项挑战。然而,基于点尺度的最高温度评估表明,与RCMS相比,这种CPRCMS较高/干燥的趋势可能更现实,而参考位点的约70%表明与驾驶RCMS相比增加了附加值,仅当考虑到分布右尾部时增加到95%。相反,根据平坦区域上的高尺度网格方法,发现CPRCMS轻微有害效应。当然,CPRCM会增强干燥条件,对夏季温度高估的敲门含义。这种改善的HWS物理表示是否也对未来的变化产生了影响。
摘要。降低全球气候模型(GCMS)的范围是区域尺度上明智的决策所需的关键高分辨率数据。但是,没有选择最合适的GCM的统一方法。在东南亚(海)上,观察结果很少,并且具有较大的不确定性,使GCM选择复杂化,尤其是降雨。为了指导此选择,我们将标准化的基准测试框架选择CMIP6 GCM,以在海上进行Dy-Namical缩小缩小,以解决当前的观测局限性。该框架通过两步过程来识别用途模型:(a)选择在模拟降雨基本特征时满足最低性能要求的模型(例如偏见,规范模式,年度周期和趋势)和(b)从(a)中选择模型,以进一步评估是否捕获了可变性模式的关键降水驱动因素(季风)和远程连接,即厄尔尼诺 - 南方振荡(ENSO)和印度洋偶极子(IOD)。GCM通常表现出湿的偏见,尤其是在婚姻大陆的复杂地形上。从第一个步骤进行的评估确定了32个GCM中的19个,这些GCM符合我们在模拟降雨中的最低性能。这些模型还可以同意捕获大气循环和远程连接,并在该地区具有可变性模式,但高估了它们的强度。最终,我们确定了八个GCM,以达到我们的绩效期望。有明显的高 -
卫生服务主管(HSE)认识到,通过应对气候变化的健康影响并遏制自己的排放,可以在应对气候危机方面发挥重要作用。医疗保健部门是全球温室气体(GHG)排放的显着贡献(Est。5-15%)和支持人类健康的最前沿的部门适应了气候变化的影响。HSE于2023年启动了其气候行动策略。一直在进行实现10个战略目标的实现 - 请参阅表1。该战略确定了有效交付HSE气候行动愿景的六个总体重点领域和十个战略目标。实施气候行动策略的工作计划包括在2023-2050期间提供的计划组合。作为这项承诺的一部分,将进行持续的审查以检查进度。
摘要:区域气候模型(RCM)是模拟和研究区域气候变化和变化的重要工具。但是,它们的高计算成本限制了区域气候预测的全面合奏,涵盖了各个地区的多种情况和驱动全球气候模型(GCM)。RCM模拟器基于深度学习模型最近被引入了一种具有成本效益且有希望的替代方案,仅需要简短的RCM模拟来训练模型。因此,评估其转移性到不同时期,场景和GCMS成为一个关键而复杂的任务,其中GCM和RCMS的固有偏见起着显着的作用。在这里,我们通过考虑文献中引入的两种不同的仿真方法的关注,并在这里分别称为完美预后(PP)和模型输出统计量(MOS),遵循良好建立的降水术语。除了标准评估技术外,我们还通过可解释的人工智能(XAI)的方法扩展了分析,以评估模型学到的经验联系的物理一致性。我们发现,两种方法都能够在不同的时期和场景(软传递性)中模仿RCM的某些气候特性,但是仿真函数的一致性在AP的范围之间有所不同。虽然PP学习了鲁棒且身体上有意义的模式,但MOS结果在某些情况下依赖于GCM,并且在某些情况下缺乏物理一致性。这限制了其适用于构建RCM结束的适用性。由于存在GCM依赖性偏差,将仿真函数转移到其他GCM(硬传递性)时都面临问题。我们通过为未来的申请提供前景来得出结论。
摘要。在本研究中预先提出了极地区域大气气候模型(称为RACMO2.4P1)的下一个版本。主更新包括嵌入Intecast的预测系统(IFS)周期47R1的物理参数包装包。这构成了降水,对流,湍流,气溶胶和表面方案的变化,并包括一种新的云方案,具有更多的预后变量和专用的湖泊模型。fur-hoverore,独立的IF辐射物理模块ECRAD被纳入RACMO,并引入了非冰期区域的多层雪模量。其他更新涉及引入分数陆地面膜,新的和更新的气候数据集(例如气溶胶构成和叶子面积指数),以及对冰川区域的几个参数化的修订。作为概念证明,我们向格陵兰,南极和北极地区的地区展示了第一个结果。通过将结果与观测结果和先前模型版本(RACMO2.33)的输出进行比较,我们表明该模型在表面质量平衡,表面体能平衡,温度,风速,风速,云含量和积雪深度方面很好地形成了。雪水头的对流强烈影响冰盖的局部表面质量平衡,特别是在高积累的地区,例如东南绿地和南极半岛。我们严格评估模型输出,并确定一些可以从进一步的模型开发中拟合的过程。
由于地形和大气过程之间的复杂相互作用引起的摘要,气候建模在具有复杂地形(例如南亚)的地区可能具有挑战性。这项研究研究了南亚日常风速的高分辨率气候模拟的附加值差异,重点是创新的地形风速(W t)调整方法。通过应用分布增加值(DAV)和上尾PDF(95%)分析,我们会系统地评估区域气候模型(RCMS)和全球气候模型(GCMS)的性能。使用W t方法前后的DAV结果的比较揭示了调整对区域气候模型性能的影响。在几种模型中,例如IPSL-RCA,Noresm1-RCA和Canesm2-RCA,掺入W t导致了实质性改进,如正dav值所示。在上尾PDF分析中,改进更加一致,表明调整通常增强了极端风事件的表示。但是,某些模型(例如NoreSm1-RCA和Canesm2-RCA)通过描述正面DAV值在调整W t之前和之后始终如一。总体而言,结果表明W t有效地改善了大多数气候模型的风速表示。根据DAV分析,高分辨率模型在低分辨率模型中平均具有15%的正添加值。这项研究的贡献正在弥合南亚观察到的风速模式与气候模型输出之间的差距。由于这项研究,揭示了评估和调整模型的量身定制方法,强调了模型行为的复杂性。在次大陆的研究领域中,这项研究的结果为与气候相关的决策,风险评估和基础设施发展提供了关键见解。