XY-移动 180mm x 180mm X XY-移动 220mm x 220mm XXXXXX XY 微调 X XY-千分尺微调 XXXXOO Z-移动 手动 100mm X Z-移动 自动 100mm XX Z-移动 手动 125mm XX Z-移动 自动 125mm XX Z-键合力 在屏幕上监控 20-1000g XXX Z-键合力控制 20g-50Kg(高强度) XX Z-Active 键合力控制 20-4000g XX 拾取和放置期间的 Z-锁定 XXXXXX 拾取时 Z-停止 XXXXXX 放置时 Z-停止 XXXXXXX Z-键合线厚度 OO 带有气动芯片弹出器的晶圆 XX 带有电子芯片弹出器的晶圆 X 集成分配器 XXXXXXX 由嵌入式 PC(Linux)操作 XXX由一体机(Windows 10)操作 XXXX 倒装芯片 1x 手动(MPA 10mmx 30mm) OOO 倒装芯片 1x 手动(MPA 45mmx 50mm) OOOO 倒装芯片 2x 手动(MPA 45mmx 50mm) OOOO 倒装芯片 2x 自动(MPA 45mmx 50mm) OO 翻转站 OOOOOO 工具加热,带外部温度控制器 OOOOO 工具加热,带内部温度控制器 OO 基板静态加热,带外部温度控制。 OOOOO 基板静态加热,带内部温度控制。 OO 基板动态加热,带外部温度控制。 OOOOO 基板动态加热,带内部温度控制。 OO 成型气体冲洗(冷和手动) OOOOO 成型气体冲洗(冷和软件控制) OO 成型气体冲洗(加热和软件控制) OO 冲压 OOOOOOO 带电动容器的冲压 OOOOOO 超声波(手动控制) OO 超声波(软件控制) OOOO UV 固化 OOOO 定量分配器 OOOOX 标准包括 O 选项
在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比
表面声波是局限于材料表面的机械波。这些波浪自然发生在地震期间,并且还经过设计用于微型设备,在传感和处理超高频率电信号中起着至关重要的作用。人造表面声波通常以数百MHz或更高的频率运行,波长在千分尺尺度上,并且表面位移的表面位移数百个皮仪 - 可与原子的大小相当。可以通过在压电材料上的互换能器的机电转换来进行这些波的激发。表面声波的损失可能很低,结合能够通过压电材料中的应变或电场将多个量子系统搭配到许多量子系统,最近已实现了量子声学领域的探索。在经典级别上,这种耦合都是可能的,其中大量相干的声子与量子系统相互作用,以及在量子级别,量子系统理想地耦合到单个声子。这不仅对量子物理学研究非常有意义,而且对于从量子传感到量子转导的应用,其中量子信号从一种类型的载体转换(例如光子)到另一个(例如声子)。在本文中,我们与GAAS上的表面声波一起工作,GAA既是压电材料,又是半导体。以这种方式,可以在托有Ingaas量子点的同一介质中生成表面声波,这些介质是光学活跃的量子系统。可以通过将声子限制在声腔中并将量子点放在光学微腔中以增强光学读数来增强表面声波和量子点之间的耦合。为此,我们在这里描述了一个包括声学腔和开放式光学微腔的平台,在不久的将来,该平台将用于使用Gigahertz表面声波和Ingaas Semicicductor量子点进行量子声学实验。由于多种损失机制,高铁表面声波腔的制造并不是微不足道的。由于系统的复杂性,有限的元素模拟是耗时的,并且不容易执行。因此,高铁表面声波腔的制造通常涉及基于迭代样品制造和表征的优化过程。在我们的情况下,我们通过电子束光刻和Al上的Al上的AL纳米表面声波杆纳米表面的声波杆。这些空腔在1 GHz下运行,并包含用于表面声波激发的插入式传感器。在第2章中,着重于表面声波腔的表征,我们建立了基于纤维的扫描光学干涉仪,用于测量GHz表面声波的位移的幅度和相位,以及在声学空腔中成像它们的空间分布。表面表面声波腔的表征通常是通过使用相同的用于波激发的相同二聚体换能器的全电测量进行的。我们通过成像表面声波腔中的横向模式我们发现此方法不完整,并且可能导致误导信息,尤其是关于腔体内声场的分布。