摘要 碳化硅 (SiC) MOSFET 属于宽带隙器件家族,具有低开关和传导损耗的固有特性。SiC MOSFET 在较高工作温度下的稳定运行引起了研究人员对其在高功率密度 (HPD) 功率转换器中的应用的兴趣。本文介绍了基于 SiC MOSFET 的两相交错升压转换器 (IBC) 的性能研究,用于调节多电飞机 (MEA) 中的航空电子总线电压。已经开发了 450W HPD、IBC 进行研究,当由 24V 电池供电时,可提供 28V 输出电压。提出了一种 SiC MOSFET 的栅极驱动器设计,可确保转换器在 250kHz 开关频率下运行,降低米勒电流和栅极信号振铃。峰值电流模式控制 (PCMC) 已用于负载电压调节。将基于 SiC MOSFET 的 IBC 转换器的效率与 Si 转换器进行了比较。实验获得的效率结果表明,SiC MOSFET 是重负载和高开关频率操作下的首选器件。关键词:高功率密度 (HPD)、交错升压转换器 (IBC)、多电飞机 (MEA)、峰值电流模式控制 (PCMC)、碳化硅 (SiC)
在过去的几十年里,能源短缺和全球变暖问题成为人类严重关切的问题。为了解决这些问题,许多国家都开发了可再生能源 (RES),例如太阳能、风能、水力发电、潮汐能、地热能和生物质能。太阳能通常通过连接到升压转换器的太阳能电池板收集以供给负载。转换器在系统中起着关键作用,因为它控制直流母线的电压。如果转换器发生任何意外故障,太阳能电池板将无法向负载供电。因此,通常需要对转换器进行可靠性评估。在本研究中,使用马尔可夫技术对连接到太阳能电池板的升压转换器进行可靠性评估。该技术被广泛用于评估具有固定故障率和维修率的系统的可靠性和可用性。利用马尔可夫方法,我们发现,对于 = 1000 ℎ ,典型特定转换器的可靠性为 0.9986,其预期寿命或平均故障时间 (MTTF) 为 713247 ℎ 。
摘要:由于人口的增长,该国对电力的需求正在增加。为了满足峰值负载需求,可再生能源(例如A.C.输入)可以与常规来源一起使用。但是,非线性电子设备的广泛使用导致网格连接系统中的功率质量问题。这是因为电源电子转换器将谐波注入系统,从而导致各种问题。在这项研究中,使用边界传导模式(BCM)提升和功率因数校正(PFC)转换器来提高功率质量。BCM DC-DC转换器是高频转换器,可通过降低DC总线电压来调节不受管制的d.c.功率并降低MOSFET上的电压应力。使用交织的脉冲宽度调制(PWM)来管理开关。减少进入和交付纹波电流并允许减少输出电容。DC-DC转换器的三个基本配置是雄鹿,增压和降压转换器。降压转换器可以降低或增加输入电压,而增强转换器由于其低和不受监管的输出电压而通常用于可再生能源系统中。通过模拟和硬件实施进行输出评估,从而显着提高了功率因数。
本文旨在详细研究非反相降压-升压转换器的评估和特性。为了改善降压-升压转换器在三种工作模式下的行为,我们提出了一种基于峰值电流控制的架构。使用三模式选择电路和软启动电路,该转换器能够扩大功率转换效率并减少反馈回路的浪涌电流。建议的转换器设计为以可变输出电压运行。此外,我们使用导通电阻低的 LDMOS 晶体管,这适用于 HV 应用。结果表明,与其他架构相比,所提出的降压 - 升压转换器的性能更完美,并且它使用 0.18 µ m CMOS TSMC 技术成功实现,输出电压调节为 12 V,输入电压范围为 4-20 V。在负载电流为 4 A 时,降压、升压和降压-升压三种工作模式的功率转换效率分别为 97.6%、96.3% 和 95.5%。
• 宽输入电压工作范围:4.2 V 至 36 V • 宽电池电压工作范围:最高 36 V,支持多种化学成分: – 1 至 7 节锂离子电池充电曲线 – 1 至 9 节 LiFePO 4 充电曲线 • 带 NFET 驱动器的同步降压-升压充电控制器 – 可调节开关频率:200 kHz 至 600 kHz – 可选同步至外部时钟 – 集成环路补偿和软启动 – 可选栅极驱动器电源输入,可优化效率 • 自动最大功率点跟踪 (MPPT),适用于太阳能充电 • 支持 USB-PD 扩展功率范围 (EPR) 的双向转换器操作(反向模式) – 可调节输入电压 (VAC) 调节范围:3.3 V 至 36 V,步进为 20 mV – 可调节输入电流调节 (R AC_SNS ):400 mA 至 20 A,步进为 50 mA,使用 5 mΩ 电阻 • 高精度 – ±0.5% 充电电压调节 – ±3% 充电电流调节– ±3% 输入电流调节 • I 2 C 控制,可通过电阻可编程选项实现最佳系统性能 – 硬件可调输入和输出电流限制 • 集成 16 位 ADC,用于电压、电流和温度监控 • 高安全集成 – 可调输入过压和欠压保护 – 电池过压和过流保护 – 充电安全定时器 – 电池短路保护 – 热关断 • 状态输出 – 适配器当前状态 (PG) – 充电器工作状态(STAT1、STAT2) • 封装 – 36 引脚 5 mm × 6 mm QFN
(新闻发布 - 立即发布)Salton Sea是北美最大,最多样化的可再生能源机会投资组合的中心,从加利福尼亚州获得了支持,从而从大量的Salton Sea中获得了地热盐水的锂提取。州长加文·纽瑟姆(Gavin Newsom)已由议会议员爱德华多·加西亚(Eduardo Garcia)签署了法律立法,该法律将建立一个蓝带委员会,以制定策略来从地热盐水中提取电池的锂。AB 1657指示加利福尼亚能源委员会(CEC)建立一个由14名成员组成的委员会,以帮助制定一项行动计划,以加快计划和计划,从索尔顿海附近的地热盐水中提取锂。委员会将包括议会议长和参议院规则委员会的任命,还包括公共事业委员会成员,汽车制造业,地热行业和地方政府代表的代表。“萨尔顿海地区的巨大锂储量有可能锚定州的气候目标,同时在该州最经济沮丧的地区之一创造了数千个良好的工会工作。SSA感谢州长采取的行动,以及我们自己的集会筹集者爱德华多·加西亚(Eduardo Garcia)是萨尔顿海毫不掩饰的冠军,他介绍和推进了这项重要的立法。此外,委员会还将建议方法简化与锂相关的设施的允许。委员会将承担的任务是评估可能的联邦,州和地方激励措施,以鼓励对锂提取和潜在锂离子制造业的发展进行经济投资。委员会被指示向州长和立法机关提出建议,以创建有利的监管和投资环境,以从地热中提取锂,并于2022年10月1日之前向州长报告。菲尔·罗森特里特(Phil Rosentrater)表示,CEC致力于开发可再生能源和锂在海洋周围的锂提取,这为更健康,更繁荣的索尔顿海地区带来了新的希望。SSA机构支持合作计划,以开发一个外围湖项目,该项目可以涵盖尘土飞扬的普拉亚,并与娱乐和可再生能源的经济机会恢复栖息地。
SLG47513 具有相对较低的电流输出,不适合在高频下驱动高电容负载(如 MOSFET 栅极)。但是,它们的数量充足,不仅可以将它们并联连接以增加输出电流(以及驱动 MOSFET 的能力),还可以组合推挽和开漏输出。这允许分别控制 MOSFET 的开启和关闭时间。在这种情况下,引脚 11、12、13 和 16 配置为 2x 推挽输出,并通过 R1 限流电阻对栅极进行充电和放电。但是引脚 3、4、5、6、8、14 和 15 配置为 2x 开漏输出(引脚 3 和 4 为 1x),直接连接到栅极,并且仅对其电容进行放电,从而加快 MOSFET 的关闭时间,提高转换器效率。
微生物燃料电池 (MFC) 是一种基于微生物的燃料电池 (MFC),可通过细菌活动产生可再生能源。通过使用产电细菌作为催化剂,这种生物电化学燃料电池能够将化学能直接转化为电能。产电细菌通过一系列细胞外电子转移 (EET) 机制(称为阳极呼吸)将电子转移到 MFC 的阳极,产电细菌专门通过氧化提取电子。产生的电子随后被转移到阴极,在阴极上用于氧化化合物的还原反应(即电能(或者,在空气阴极MFC的情况下,是氧气)[1]。通过添加营养物质作为能源,可以同时实现可再生能源的生产。因此,人们认为利用有机废物发电的MFC技术前景广阔。然而,由于MFC的内阻大、输出电压低,单个MFC产生的能量实际上是无用的,这是主流的MFC技术(它甚至不能直接激活低功率电子设备)
表 5.引脚功能描述 引脚号助记符 描述 A1 IOVDD I/O 和数字电源 A2 AGND 模拟接地 A3 PGND 功率放大器接地 A4 BSTSW 升压开关 B1 LR_SEL/ADDR PDM 输入/I 2 C 地址的左或右选择 B2 SEL PDM 或 I 2 S/TDM 接口模式选择 B3 SNS_PDM_CLK/FSYNC PDM 模式下感测数据的 PDM 输出时钟/I 2 S/TDM 模式下的帧同步时钟 B4 BSTSW 升压开关 C1 DAC_PDM_CLK/BCLK PDM 模式下的 PDM 输入时钟/I 2 S/TDM 模式下的位时钟 C2 SNS_PDM_DAT/SNS_SDATAO PDM 模式下的感测数据输出/I 2 S/TDM 模式下的感测数据输出 C3 VBST 升压转换器输出 C4 VBST升压转换器输出 D1 DAC_PDM_DAT/DAC_SDATAI PDM 模式下 DAC 的 PDM 数据输入/I 2 S/TDM 模式下 DAC 的串行数据输入 D3 PGND 功率放大器接地 D4 OUTN 反相 D 类放大器输出 E1 SCL I 2 C 时钟信号 E2 OUTP 同相 D 类放大器输出 E3 VBAT 外部电池电源 E4 SDA I 2 C 数据信号