1-印第安纳波利斯普渡大学印第安纳大学普渡大学工程与技术学院机械与能源工程和综合纳米系统发展研究所,印第安纳波利斯普渡大学,印第安纳波利斯,美国46202,美国2-纳米相物材料科学中心 - 橡树岭国家实验室,Oak Ridge,Oak Ridge,TN 37831,美国37831,Lemt septor,lem tn 37831,lem tn 37831 60439,美国4 -lukasiewicz研究网络 - 波兰波兰华沙的微电子和光子学研究所 - 计算科学与工程部,橡树岭国家实验室,橡树岭,田纳西州橡树岭,37831,美国6-美国6-美国材料工程学院,西拉法伊大学,西拉法伊特大学,机构,美国479907.99090799999090909090909.99090990909909090.990990990.990990990.990990990990990.990999999090.9909999099090.990型,拉斐特(Lafayette),美国47907 * - 通讯作者banasori@purdue.edu摘要过渡金属碳化物已在储能,转换和极端环境应用中采用。在其2D对应物中的进步(称为MXENES)可以在〜1 nm厚度尺度上设计独特的结构。碱阳离子在MXENES制造,存储和应用中至关重要,但是,这些阳离子与MXENES的精确相互作用尚不完全了解。在这项研究中,使用Ti 3 C 2 t X,Mo 2 TIC 2 T X和Mo 2 Ti 2 C 3 T X MXenes,我们介绍了如何通过碱阳离子占用过渡金属空位位点,以及它们对MXENE结构稳定的影响以控制Mxene的相变。在MXENES中,这代表了其2D基底平面的阳离子相互作用的基本面,用于MXENES稳定和应用。我们使用原位高温X射线衍射和扫描透射电子显微镜,原位技术(例如原子层分辨率二次离子质谱法)和密度功能理论模拟进行了检查。广义,这项研究证明了在原子量表上陶瓷理想相关关系的潜在新工具。引言过渡金属碳化物已用于氧化物缺乏潜力的独特应用中,例如其高熔点(例如,HFC的〜4,000°C),1,2导热率(例如WC的63 W·M -1·K -1),3和机械行为(弹性模量)(弹性模型最高为549 GPA)。4在当前的研究中,碳空缺5,快速加热,6或高贵的金属装饰7提供了修改过渡金属碳化物系统固有物质行为的工具。8-17尽管某些方法(例如闪光灯或长期烧结在低(〜750°C)的温度为理想性能提供了一定的相位控制,但有6,12仍有机会准确地控制过渡金属碳化物阶段,以实现理想相位关系的阶段。18在2011年引入MXENES,将过渡金属碳化物推向了2D领域,19已增加了一个多种多样,可调节的家族,包括少量原子(〜1 nm厚)(〜1 nm-thick)和溶液处理的过渡金属碳化物,并将其添加到材料科学上。20,21 mxenes的化学多样性通过其广泛的化学式M n +1 x n t x显而易见,其中m代表一个或多个3 d -5 d和3-6组的n +1层,x代表N层的碳和/或氮气和/或氮气的n层
正常状态下,通过负载对电池放电, DW02R 电路的 VM 端电压将随放电电流的增加而升高。如果放电电 流增加使 VM 端电压超过过电流放电保护阈值 V EDI ,且持续时间超过过电流放电保护延迟时间 tEDI ,则 DW02R 进入过电流放电保护状态;如果放电电流进一步增加使 VM 端电压超过电池短路保护阈值 V SHORT ,且 持续时间超过短路延迟时间 t short ,则 DW02R 进入电池短路保护状态。
越来越多的创新需要一类新的无线网络,以支持收集和接收实时数据的关键资产。幸运的是,无线技术已经发展以满足这些需求。Wi-Fi 6e和Wi-Fi 7具有带宽,速度和容量的显着改善,使组织能够连接更大范围和更多的设备。为了支持这些延迟和漫游敏感的应用,需要诸如Cisco Urwb之类的技术。URWB是Wi-Fi的扩展,并为高度关键的应用提供了超可靠性,超低潜伏期和无缝的交接。
两种类型的糖尿病类型(I)和(II)类型。II型糖尿病T2DM会影响人体的大多数器官,并且肝脏不受欢迎。 证据表明,肝硬化肝脏患者中约有70%可以被诊断为T2DM,可能启动并加剧慢性肝病2。 美国糖尿病协会(ADA)建议HBA1C作为禁食血糖水平以诊断糖尿病的好选择。 hba1c,这是针对慢性高血糖的出色独立测试,并且可能与严重并发症的可能性相关。 高水平的HBA1C被认为是患有或患有糖尿病患者的患者3的冠状动脉心脏病(CHD)和脑血管AC CIDEN(CVA)的危险因素3。II型糖尿病T2DM会影响人体的大多数器官,并且肝脏不受欢迎。证据表明,肝硬化肝脏患者中约有70%可以被诊断为T2DM,可能启动并加剧慢性肝病2。美国糖尿病协会(ADA)建议HBA1C作为禁食血糖水平以诊断糖尿病的好选择。hba1c,这是针对慢性高血糖的出色独立测试,并且可能与严重并发症的可能性相关。高水平的HBA1C被认为是患有或患有糖尿病患者的患者3的冠状动脉心脏病(CHD)和脑血管AC CIDEN(CVA)的危险因素3。
急性胰腺炎(AP),是外分泌胰腺的炎症状况,发病率增加,1可以导致代谢并发症,包括糖尿病(DM)。2–4急性胰腺炎联盟(T1DAPC)中的1型糖尿病是由国家糖尿病和消化和肾脏疾病(NIDDK)(NIDDK)于2020年建立的,研究了AP后DM后的外分泌和内分泌胰腺之间的相互作用。其前瞻性纵向观察研究(与急性胰腺炎及其机制有关的糖尿病(糖尿病)旨在研究AP后DM的发病率,病因和病理生理学,如本期其他地方所述。T1DAPC招聘和保留委员会(RRC)(图1),包括来自每个T1DAPC临床中心,数据协调中心(DCC)和NIDDK的代表。本手稿描述了RRC为梦想研究开发的招聘和保留方法,并突出了可能对AP的未来研究也有益的机会。
神经肽 Y (NPY) 是一种由 36 个氨基酸组成的肽,由中枢和周围神经系统在长时间交感神经激活后释放,在许多生理功能中发挥着重要作用。它是心脏中最丰富的神经肽,7 存在于供应血管、心肌细胞和心内膜的神经元中。8 NPY 与去甲肾上腺素一起由心脏交感神经末梢释放,并作为辅助递质和心脏功能的局部调节剂,充当强效血管收缩剂,同时还降低副交感神经驱动 9 并增加肌细胞钙负荷,1 0 因此它可能在 HF 的病理生理学中很重要。神经肽 Y 的半衰期比去甲肾上腺素长,并增强其血管收缩作用。功能性 NPY 是在前体 NPY 裂解后产生的,而前体 NPY 又被酶二肽基肽酶-4 进一步截断。它的作用是通过 G 蛋白受体 Y 1 R-Y6R 介导的。它被认为与动脉粥样硬化的发病机制有关,11 维持
乙二醇是汽车防冻剂和各种家庭和工业产品中的共同组成部分,无论是意外还是故意的,都会在摄入时构成重大健康风险。以严重的代谢性酸中毒,草酸钙晶体的形成和各种末端器官损伤,乙烯乙二醇毒性的特征是致命的,其潜在致命剂量估计为1500 mg/kg。母体化合物具有渗透活性,导致有害代谢物的产生,例如乙酸和草酸,这有助于代谢性酸中毒,肾毒性和心脏毒性。急性管理策略涉及支持性护理,将fomepizole作为竞争性酶抑制剂的管理以及通过透析消除肾脏。此外,乳酸间隙是乙二醇中毒中重要的诊断工具,突出了测量和预期乳酸水平之间的差异,这可能表明代谢性酸中毒和组织灌注不足。,我们提出了一例乙二醇中毒的病例,尽管启动治疗以及可能使用乳酸间隙来预测严重程度,但心脏骤停复杂。
本研究在 2009 年至 2019 年期间招募了 400 名正常儿童作为对照组,以及 75 名有颅内压升高迹象的儿童。测量了 CT 上的 ONSD 等参数。采用监督机器学习根据 CT 测量结果预测疑似颅内压升高。正常儿童的 ln(年龄) 和平均 ONSD (mONSD) 之间存在线性相关性,mONSD = 0.36ln(年龄)+2.26 (R 2 = 0.60)。本研究根据单变量分析显示,400 名正常儿童的 CT 测得的 mONSD 与 ln(年龄) 和大脑宽度(而非脑室宽度)之间存在线性相关性。此外,多变量分析显示双尾核最小距离也与 mONSD 有关。对照组和疑似颅内压升高组的组间比较结果显示,mONSD 和脑室宽度具有统计学意义。研究表明,监督式机器学习应用可用于预测儿童疑似颅内压(ICP)升高,训练准确率为 94%,测试准确率为 91%。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作