在背面金属化之前,晶圆会被减薄,因为基板是设备的功能部分。300 毫米/12 英寸晶圆要么减薄到约 200 微米厚,要么遵循所谓的 Taiko 晶圆研磨原理。在后一种情况下,硅晶圆由一个外部 Taiko 环和减薄的硅膜组成。对于 300 毫米/12 英寸晶圆,该膜会根据设备电压等级减薄到 60、90 或 120 微米。薄基板的热容量低,因此需要严格控制工艺温度。沉积过程中的温度对固有薄膜应力有显著影响。为了最大限度地减少晶圆弯曲,必须最大限度地减少金属层堆栈引入的应力。CLUSTERLINE® 采用特殊的卡盘设计,可控制晶圆温度而不会损坏正面。在标准应用中,使用凹陷卡盘配置。在这种经典设计中,晶圆在沉积过程中位于外环上,从而防止与设备表面接触。然而,尽管凹陷式卡盘是一种经济高效的解决方案,但由于缺乏主动卡盘,热耦合受到限制。因此,对于需要更严格温度控制的应用,独特的 BSM-ESC(用于背面金属化的静电卡盘)是首选。
F01:未来前沿 - 功能材料与设备的创新 - 一般研讨会主题 F 教授博士安东尼奥·安科纳(西大学),教授、博士Carsten Gachot(维也纳技术大学),教授、博士。 Andrés Fabián Lasagni(德累斯顿工业大学)F02:可持续能源应用的高性能材料 Daniel Benitez(德国航空航天中心 (DLR))、Mathieu Boidot(原子能和替代能源委员会 (CEA))、Dr.-Ing. Frederike Brasche(亚琛工业大学),教授、博士。能。 Ulrich Krupp(亚琛工业大学)、Fernando Santos(AZTERLAN Aliendalde Auzunea nº6)F03:蜂窝材料和机械超材料 Angelika Gedsun(弗莱堡大学)、Max Mylo(弗莱堡大学)、Dr. Viacheslav Slesarenko(弗莱堡大学),教授、博士Ulrike GK Wegst(达特茅斯学院),博士尹开阳 (弗莱堡大学) F04:表面处理的光子技术教授安东尼奥·安科纳(巴里大学),博士Robert Baumann(德累斯顿工业大学),教授、博士。 Andrés Fabián Lasagni(德累斯顿工业大学),博士Gediminas Raciukaitis(物理科学与技术中心 FTMC),教授、博士Gert-willem Römer(特温特大学),博士Marcos Soldera(德累斯顿工业大学),博士Bogdan Voisiat(德累斯顿工业大学),工学博士Christoph Zwahr(德累斯顿工业大学)F05:多功能高熵合金教授Oliver Gutfleisch(达姆施塔特工业大学),工学博士韩流流(德国马克斯普朗克铁研究所),教授、博士Alfred Ludwig(波鸿鲁尔大学)F06:压电氧化物教授、博士Holger Fritze(克劳斯塔尔工业大学),博士Jutta Schwarzkopf(莱布尼茨晶体生长研究所)F07:数据驱动和机器学习辅助材料研究博士Leopoldo Molina-Luna(达姆施塔特工业大学),教授、博士徐百祥(达姆施塔特工业大学),教授、博士张宏斌 (达姆施塔特工业大学)
空气中的分子污染:对先进半导体的理解和最小化的最新发展 空气中的分子污染:对先进半导体的理解和最小化的最新发展
GX2001: 20W,2.0GHz,11dB,65%,28VDC GX4001: 35W,2.0GHz,11dB,60%,28VDC GX2441: 50W,2.0GHz,11dB,55%,48VDC GX3441: 80W,2.0GHz,11dB,60%,48VDC GX4441: 100W,2.0GHz,11dB,60%,48VDC GX3442: 120W,2.0GHz,11dB,55%,48VDC GX4002: 70W,2.0GHz,11dB,55%,28VDC GX4442: 160W, 2.0GHz,12dB,55%,48VDC
随着科学界变得越来越专业化,研究人员可能会迷失在不断增加的子领域的深林中。这本开放获取期刊《应用科学》旨在将这些子领域联系起来,以便研究人员可以穿过森林,看到周围或相当遥远的领域和子领域,从而借助这个多维网络进一步发展自己的研究。
课程目标 过去 70 年现代电子工业的发展对社会和日常生活产生了巨大影响,其基础是半导体物理和器件。本课程旨在全面介绍一些选定的经典半导体器件、微电子器件和光电子器件的物理和工作原理。本教材主要面向研究生,但物理学、电气和电子工程和材料科学专业的高年级本科生也可能感兴趣。学生应该已经掌握了一些量子力学、统计力学和固体物理学的基础知识,尽管课程开始时将对半导体物理学进行回顾。
石英是 SAW 传感器的典型基板,但它不是半导体,而硅是微电子器件的典型半导体,但它不是压电材料,需要沉积压电薄膜才能激发 SAW。这使得砷化镓 (GaAs) 成为集成 SAW 微传感器应用的独特材料。GaAs 的压电特性与石英相似,因此可以直接在 GaAs 基板上制造 SAW 器件,而无需沉积压电薄膜。图 1 中的数据显示,GaAs SAW 传感器的灵敏度与石英 SAW 传感器相当。此外,GaAs 是一种成熟的半导体器件材料,可用于制造集成高频射频微电子器件。
1从委员会到欧洲议会,欧洲理事会,理事会,欧洲经济和社会委员会以及该地区委员会的欧洲工业战略委员会(2020)102决赛,日期为2020年3月10日,欧洲委员会https://eur-lex.europa.eu/legal-content/en/txt/?uri=celex%3A52020DC0102&qid = 1655213892867 2从委员会到委员会的交流,从委员会到欧洲议会,欧洲委员会,欧洲经济和社会委员会的新工业委员会的新工业委员COM/2021/350最终,日期为2021年5月5日,欧洲委员会
超导量子器件具有出色的连接性和可控性,而半导体自旋量子位则以其持久的量子相干性、快速控制以及小型化和微缩潜力而脱颖而出。近几年来,在将超导电路和半导体器件结合成混合量子系统方面取得了显著进展,该系统受益于两种成分的物理特性。超导腔可以介导电子自由度(例如半导体芯片上单个电子的自旋)之间长距离的量子相干耦合,从而为量子器件提供必要的连接性。半导体量子点中的电子自旋已经达到了非常长的相干时间,并允许快速量子门操作并提高保真度。我们总结了描述超导-半导体混合量子系统的最新进展和理论模型,解释了这些系统的局限性,并描述了未来实验和理论的不同发展方向。