水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
生活在山区地区的土著人民保护许多全球生物多样性热点,以及世界上大多数农作物驯化和多样性的中心,为气候适应提供了重要的韧性农作物品种和牲畜品种的共同进化存储库。我们的山地祖国和领土是数十亿人的水塔,是具有高精神价值的地方。我们通过维护祖先的信念,价值观,实践和习惯法来积极保护地球母亲。山区,半干旱和干旱地区的传统景观,包括森林,自然牧场,湿地和生物多样性农业生态生产系统,对于气候适应和缓解至关重要,但对气候变化也非常敏感。
非洲以及世界许多其他地区的生物多样性正在遭受严重的衰落和灭绝威胁。这是由于动植物的几种物种和群落的生存能力,危害和灭绝以及生态系统功能的崩溃而表现出来的。大量的森林,湿地,沿海和农业生态系统以及干旱和半干旱地区已被降解,因此,几种动植物已经丢失了几种动植物,其他动物和动物物种濒临灭绝,遗传多样性严重侵蚀。可用的证据表明,每年正在清除大约1700万公顷的热带森林,科学家估计,以这种速度,在未来30年中,森林中高达10%的生物多样性可能面临灭绝。1
由于自然资源过度利用,砍伐和燃烧农业和木炭生产,森林砍伐在过去的几十年中在马达加斯加的西南部加速了。为了提供可持续森林管理的信息,我们评估了经常用于木炭生产的木本物种的生物量可用性。进行了半结构化家庭访谈(N¼63),以收集有关木炭生产活动的信息,并确定用于此活动的物种。将簇抽样方法应用于库存木质物种,并测量DBH,总高度和冠直径。木材生物量和木材体积估计的异形方程是针对甲呈acacia bellula(n¼20),阿拉科菌(n¼18),白化菌(N¼17),cedrelopsis spp的。(n¼13)和混合物种(n¼43)。完全发现68种用于木炭生产。观察到DBH,总高度和木材生物量之间的高相关性(R 2在0.78和0.99之间变化)。 木材生物量随着定居点的距离而增加,并且在干燥森林中最高价值的土地覆盖类型之间有显着差异。 总体而言,村庄附近的树木生物量低于国家公园内部和其他半干旱地区的生物量,这主要是由于人为的活动,例如木炭生产。 ©2017 Elsevier Ltd.保留所有权利。观察到DBH,总高度和木材生物量之间的高相关性(R 2在0.78和0.99之间变化)。木材生物量随着定居点的距离而增加,并且在干燥森林中最高价值的土地覆盖类型之间有显着差异。总体而言,村庄附近的树木生物量低于国家公园内部和其他半干旱地区的生物量,这主要是由于人为的活动,例如木炭生产。©2017 Elsevier Ltd.保留所有权利。
农业土壤中的有机碳损失是全球范围内最大的环境问题和挑战之一,这在联合国环境计划中被认为。通过优化的农业实践来管理土壤有机碳(SOC)是改善土壤生态系统服务的策略,并且在增强土壤功能方面具有至关重要的作用。提高SOC存储水平不仅会影响大气碳含量,还可以改善土壤物理,化学和生物学功能和特性。然而,少量SOC会导致土壤结构性降解,并降低水渗透率和总体稳定性,尤其是在世界的干旱和半干旱地区,这也会增加土壤侵蚀和土壤损失Blanco-Canqui H等。[1]。
本指南的第一个版本是在 1994 年 9 月在内罗毕举行的一次研讨会讨论的基础上起草的,此次研讨会的目的是协助实施 IISD 的“干旱和半干旱地区 (ASAL) 可持续生计适应性战略”项目。最初,该指南纯粹是作为 IISD 项目的参与式研究技术指南而设计的,但很明显,项目执行者的需求并不是一本工具手册,而是一本指南,帮助他们将一套抽象的概念应用到具体的实地情况中,并指导实地工作的设计和实施。关于参与式研究技术的一般信息来源很多,大多数参与者都具备一些技能和经验,但对于如何将它们应用于本项目的实践,却没有什么帮助。
本指南的第一版是在内罗毕(1994 年 9 月)的一次研讨会讨论的基础上起草的,该研讨会的目的是协助实施 IISD 的“干旱和半干旱地区(ASAL)可持续生计适应性战略”项目。最初,该指南纯粹是作为 IISD 项目的参与式研究技术指南而设计的,但很明显,项目执行者的需求并不是一本工具手册,而是一本指南,帮助他们在具体的实地情况下应用一组抽象的概念,并指导实地工作的设计和实施。关于参与式研究技术的信息来源有很多,大多数参与者都具备一些技能和经验,但对于如何将它们应用于实践以解决本项目的问题,却没有多少帮助。
1 土耳其尼代奥梅尔·哈利斯德米尔大学农业科学与技术学院农业遗传工程系,2 巴基斯坦拉合尔旁遮普大学分子生物学卓越中心,3 福建农林大学(FAFU)农学院豆科作物遗传与系统生物学中心/油料作物研究所,作物遗传、育种与综合利用教育部重点实验室,福州,4 巴基斯坦费萨拉巴德农业大学农学院植物病理学系,5 澳大利亚西澳大利亚州默多克默多克大学作物与食品创新中心国家农业生物技术中心,6 印度海得拉巴国际半干旱热带作物研究所(ICRISAT)基因组学与系统生物学卓越中心
实地调查期间,记录了根据《FFG 法案》被列为受威胁的一种动物物种(金太阳蛾)、七种植物物种(金合欢、垂枝金合欢、长刺芹、毛尾草、斯温森豌豆、布洛克和布洛克槲寄生)和一个生态群落(半干旱西北平原布洛克草地林地群落)。如果这些物种或群落受到私人土地的影响,则无需根据《FFG 法案》获得许可证。但是,如果计划在公共土地上产生影响,则需要《FFG 法案》许可证。WestWind Energy 最多需要六周时间才能从 DELWP 获得批准的《FFG 法案》许可证。