通讯作者 *Bilal Naji Alhasnawi 巴士拉大学电气工程系,巴士拉,伊拉克 电子邮件:bilalnaji11@yahoo.com 摘要 随着负载的增加,混合交直流微电网在电力系统中越来越受欢迎。本研究提出,在消费者住宅中采用一些可再生能源(如太阳能、风能)构建混合交直流微电网以满足需求。电力生产和消费正在发生重大转变。趋势之一是将微电网整合到可再生能源渗透率高的配电网中。本文提出了一种针对混合微电网的新型分布式协调控制,该系统可应用于混合能源和可变负载的并网模式和孤岛模式。所提出的系统允许分布式能源协调运行,以在需要时提供必要的有功功率和附加服务。此外,最大功率点跟踪技术也应用于光伏电站和风力涡轮机,以便在环境条件变化时从混合电力系统中提取最大功率。最后,以光伏、风力涡轮机、混合微电网为范例建立了仿真模型,该模型可应用于不同的场景,例如小型商业和住宅建筑。仿真结果验证了引入的策略对于在不同模式下运行的混合微电网的有效性和可行性 关键词:分布式协调、公用电网、逆变器转换器、分层控制、微电网。
随着可再生能源和电力电子技术的渗透率不断提高以及系统惯性不断下降,快速频率调节 (FFR) 正成为提高电力系统频率稳定性的关键措施。尽管已经提出了不同的控制方法来为风力发电机 (WTG) 提供有限的虚拟惯性和频率支持能力,但尚未充分研究 WTG 和电池储能系统 (BESS) 之间的协调以及潜在的优化优势。本研究提出了一种 WTG 和 BESS 的协调控制,为交流系统提供 FFR,同时延长电池的循环寿命。首先,提出了一种经济高效且基于 SOC 的 BESS 单独 FFR 策略。然后,通过分析 WTG 的运行特性,提出了一种适用于所有风速下的 WTG-BESS 混合系统的协调 FFR 方法。提出的协调策略在不同运行条件下提高了 FFR 性能,延长了电池的循环寿命并降低了电池成本。基于变化风速的模拟结果表明,提出的FFR策略提高了频率最低点并避免了频率二次下降。
摘要 —本文提出了一种基于云托管和边缘托管的分布式能源 (DER) 数字孪生 (DT) 实现分布式能源 (DER) 协调控制的新方法。随着可再生能源的大规模整合,DER 在支持电力系统频率调节方面发挥着越来越重要的作用。然而,由于 DER 的能力和特性存在显著差异,DER 的个体和不协调响应可能导致整体响应效率低下,并产生不良特征,例如响应缓慢、严重超调等。因此,DER 的协调对于确保理想的总体响应至关重要。传统的集中式或分布式方法的一个主要缺点是它们严重依赖实时通信。本文通过应用可在云中托管的 DT 来解决集中式控制方法和可在边缘托管的分布式方法的挑战,以最大限度地减少对实时通信的需求,同时能够实现 DER 之间的整体协调。使用真实的实时模拟测试设置验证了所提出的基于 DT 的协调控制,结果表明,基于 DT 的协调控制可以显著改善聚合 DER 的响应,从而在意外事件期间为电网提供有效支持。
螺旋弹簧储能技术是一种极具潜力的新兴储能技术,利用永磁同步电机通过收紧或释放螺旋弹簧进行能量转换。针对螺旋弹簧在运行过程中扭矩与惯性同时变化的特点,采用传统的矢量控制方式,螺旋弹簧储能系统难以在调节电网输入/输出功率方面表现出良好的控制性能。提出一种基于电流矢量定向反步控制的网侧变流器(GSC)与机侧变流器(MSC)一体化的螺旋弹簧储能系统与电网功率协调控制方案。首先,建立电流矢量定向坐标系下GSC与PMSM的数学模型。其次,利用反步控制原理设计协调控制方案,并从理论上证明其稳定性。然后,通过考察期望控制性能确定控制方案中的最优控制参数。最后,仿真与实验结果表明,所提出的控制方案在选定的控制参数下,能够很好地协调GSC与MSC,准确、快速地跟踪功率信号,有效提高SSES系统的运行性能及其与电网的能量交换。
摘要:在世界范围内实现碳中和的宏伟目标下,可再生能源蓬勃发展。然而,由于其固有的不确定性和间歇性,可控系统的运行灵活性对于容纳可再生能源至关重要。现有的研究主要侧重于提高常规电厂的灵活性,而较少关注聚光太阳能发电与热能存储 (CSP-TES) 系统的灵活运行。为此,本工作的最终目标是研究CSP-TES 系统在电网系统调节中灵活运行的潜力和实现方式。在此目标下,分析了带有熔盐基TES 的50 MW槽式集热器CSP电站的动态特性,并总结了其主要的控制特性以证明该理想状态的可能性。之后,提出了一种协调控制策略。具体而言,分别为太阳能场和储能子系统设计了基于扰动观测器的前馈反馈控制方案和前馈反馈控制器,而功率块子系统则由两输入两输出的解耦控制器进行调节。基于分散结构,分别进行了三个仿真案例,以测试CSP-TES系统对大范围负荷变化跟踪、强扰动抑制或两者的能力。结果表明,即使在辐照剧烈波动的情况下,CSP-TES系统也能基于所提出的协调控制策略充分跟踪电网指令,证明了CSP-TES参与电网调节的灵活性。在可再生能源不断渗透到电网系统的背景下,研究CSP-TES系统从自身优化到电网调节器的角色转变具有重要意义。
摘要 — 可再生能源对于孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的光伏输出,但需要削减光伏输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少削减。水厂系统也适合 DR 资源,因为许多水厂系统都有大型水箱或水坝作为储水设施。为了充分利用水厂系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文构建了具有多个 DR 资源的孤立电力系统的优化模型,作为制定协调控制方法的第一步。比较了 2 周优化和 1 天优化之间 DR 资源的运行情况,分析了 5 种光伏容量设置的长期规划效果。仿真结果表明,DR 协调控制的适用规则因季节和安装的光伏容量而异。
摘要 对于含可再生能源的微电网而言,频率稳定性至关重要,然而源荷不确定性会导致频率的恶化和储能设备的增加。为此,提出了一种基于滑模方法的含混合储能系统(HESS)微电网频率协调控制策略。首先,设计详细频率调节方案,将频率偏差和区域控制误差分成不同分量作为不同电源的功率参考值。其次,通过设计模糊控制器设定由超级电容和电池组成的HESS的功率阈值,以降低HESS的备用功率,避免不合理的功率输出。第三,建立含HESS的负载频率控制模型,并利用详细频率调节方案设计滑模控制。最后,通过不同算例的对比,验证了所提频率协调控制策略的有效性。
摘要:分布式可再生能源系统如今已广泛安装在许多建筑物中,将建筑物转变为“电力生产者”。现有研究已经开发了一些先进的建筑侧控制,这些控制可以实现可再生能源共享,旨在通过调节储能充电/放电来优化建筑集群级性能。然而,这些建筑侧控制并未考虑电动汽车灵活的需求转移能力。例如,电动汽车通常在插入充电站后就开始充电。但在这样的充电期间,可再生能源发电可能不足以满足电动汽车充电负荷,从而导致电网电力进口。因此,建筑集群级性能并未得到优化。因此,本研究提出了一种建筑生产者的协调控制,通过利用建筑物和电动汽车的电池的能量共享和存储能力来提高集群级性能。首先开发了电动汽车充电/放电模型。然后,基于预测的未来 24 小时电力需求和可再生能源发电数据,协调控制首先将整个建筑群视为一个“集成”建筑,并使用遗传算法优化其运行以及电动汽车充电/放电。接下来,使用非线性规划协调未来 24 小时内各个建筑的运行。为了验证,已在瑞典卢德维卡的一个真实建筑群上测试了开发的控制。研究结果表明,与传统控制相比,开发的控制可以将集群级每日可再生能源自用率提高 19%,同时将每日电费降低 36%。
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE-AC36- 08GO28308。资金由实验室指导研究与开发 (LDRD) 计划提供。文章中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受文章发表时,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
