摘要:为适应独立光伏与分布式储能系统直流微电网频繁充放电及提高充电精度,提出一种基于增强下垂控制的能量协调控制策略。通过优化多储能系统的输出优先级,提高直流微电网整体供电质量。当光伏、储能同时工作时,所提方法可动态调整光伏、储能工作状态及储能单元下垂系数以满足系统要求。在包含不同容量储能单元的直流微电网中,所提策略可保持母线电压稳定,提高储能荷电状态均衡速度与精度,避免储能单元因过充或放电而停机。利用MATLAB/Simulink对所提策略进行验证,仿真结果表明所提控制策略在平衡能量供需、减少储能单元充放电时间等方面的有效性。
随着可再生能源和电力电子技术的渗透率不断提高以及系统惯性不断下降,快速频率调节 (FFR) 正成为提高电力系统频率稳定性的关键措施。尽管已经提出了不同的控制方法来为风力发电机 (WTG) 提供有限的虚拟惯性和频率支持能力,但尚未充分研究 WTG 和电池储能系统 (BESS) 之间的协调以及潜在的优化优势。本研究提出了一种 WTG 和 BESS 的协调控制,为交流系统提供 FFR,同时延长电池的循环寿命。首先,提出了一种经济高效且基于 SOC 的 BESS 单独 FFR 策略。然后,通过分析 WTG 的运行特性,提出了一种适用于所有风速下的 WTG-BESS 混合系统的协调 FFR 方法。提出的协调策略在不同运行条件下提高了 FFR 性能,延长了电池的循环寿命并降低了电池成本。基于变化风速的模拟结果表明,提出的FFR策略提高了频率最低点并避免了频率二次下降。
层蛋白(NL)。控制基因组与 NL 相互作用的因素在很大程度上仍然难以捉摸。在这里,我们确定 DNA 拓扑异构酶 2 beta(TOP2B)是这些相互作用的调节器。TOP2B 主要与 LAD 间(iLAD)染色质结合,其消耗导致 LAD 和 iLAD 之间的基因组分区部分丢失,这表明其活性可能保护特定 iLAD 免于与 NL 相互作用。TOP2B 消耗对 LAD 与层蛋白 B 受体(LBR)相互作用的影响大于与层蛋白的相互作用。尽管两种蛋白质在基因组中的位置不同,但 LBR 消耗的表型模拟了 TOP2B 消耗的影响。这表明在 NL 组织基因组的互补机制。事实上,TOP2B 和 LBR 的共同消耗会导致部分 LAD/iLAD 倒置,反映了致癌基因诱导衰老的典型变化。我们提出,由 iLAD 中的 TOP2B 和 LAD 中的 LBR 控制的协调轴维持着基因组在 NL 和核内部之间的划分。关键词:层粘连结构域、DNA 拓扑结构、DNA 拓扑异构酶、基因组组织、核外围、层粘连蛋白 B 受体、NE 系链。重点:
考虑到动力协调控制系统的耐久性能最为重要,需要进行充分的分析和评估,并设定有余量的性能目标值。此外,关于设定燃油效率的目标,除了目前用于评估的一般驾驶模式之外,还希望创建和评估适合车辆实际方面的驾驶模式。
摘要 —本文提出了一种基于云托管和边缘托管的分布式能源 (DER) 数字孪生 (DT) 实现分布式能源 (DER) 协调控制的新方法。随着可再生能源的大规模整合,DER 在支持电力系统频率调节方面发挥着越来越重要的作用。然而,由于 DER 的能力和特性存在显著差异,DER 的个体和不协调响应可能导致整体响应效率低下,并产生不良特征,例如响应缓慢、严重超调等。因此,DER 的协调对于确保理想的总体响应至关重要。传统的集中式或分布式方法的一个主要缺点是它们严重依赖实时通信。本文通过应用可在云中托管的 DT 来解决集中式控制方法和可在边缘托管的分布式方法的挑战,以最大限度地减少对实时通信的需求,同时能够实现 DER 之间的整体协调。使用真实的实时模拟测试设置验证了所提出的基于 DT 的协调控制,结果表明,基于 DT 的协调控制可以显著改善聚合 DER 的响应,从而在意外事件期间为电网提供有效支持。
- 研究苫小牧地区及其周边地区的氢气需求潜力 [JFE 工程株式会社] - 研究重复使用蓄电池的规格和安全标准 - 考虑构建使用重复使用蓄电池的系统时的问题 [北海道电力网络株式会社] - 在考虑下一代水电解能源管理系统的规格时确认与电网的协调控制相关情况 - 研究可再生能源发电量、可使用电量以及对电网的影响 [Deloitte Tohmatsu Consulting LLC] - 项目管理 - 构建绿色氢气的生产、运输和使用商业模式并评估商业可行性
本文旨在提出一种配备储能装置的电网形成转换器与水力发电机之间的协调控制策略,以促进未来电力系统中转换器的频率支持。这样,就可以利用转换器系统的快速动态特性,同时最大限度地减少与转换器系统相关的储能要求。电网形成转换器频率控制器的拟议调整标准有助于转换器系统与水力发电机之间的自然协调。将所提出的控制策略的有效性与文献中现有的传统下垂方法进行了比较。最后,使用 PSCAD 中的详细时域仿真模型验证了分析结果。