许多人都同意,当一套负责产生人类智能的原理(即计算理论:Marr,1982)被发现时,心理科学就达到了它的目标。传统上,对此类原理的追求植根于对“理性”主体通常应如何表现的牢固先入之见(McCarthy,2007;Millroth 等人,2021;Minsky,2007)。虽然这种方法无疑是卓有成效的(例如,Anderson,2013 年;Chase 等人,1998 年;Marr,1982 年;Chater 和 Oaksford,1999 年),但人们一再争论说,对人类行为的理解仍然很少,因为没有投入足够的精力来研究个人的实际问题和目标,导致对可用于指导计算分析层面研究的规范理论做出过早的假设(Millroth 等人,2021 年;Minsky,1974 年;2007 年)。
阿拉巴马州高等教育的首个总体规划于 1974 年由高等教育委员会正式通过,此前,高等教育机构和委员会工作人员之间进行了长期且卓有成效的合作。该报告包含摘要和全系统建议,随后将进行详细和有计划的研究。这份第一份文件的范围涵盖了阿拉巴马州高等教育的历史背景、现状和一般建议。成立该委员会的阿拉巴马州法律要求成立一个委员会,“以评估委员会工作的有效性并根据需要提出变更建议。”在过去的一年中,阿拉巴马州高等教育委员会的有效性评估委员会向州长、立法机构和公众提交了报告。该国没有其他州协调机构有这样的定期评估法定要求。 - 30 项建议中最重要的是阿拉巴马州立法机构应修改现有法规,赋予委员会合理的权力要求机构接受它对
摘要:链霉亲和素-皂素可视为一种“次级”靶向毒素。科学界巧妙而卓有成效地利用了这种结合物,使用多种生物素化的靶向剂将皂素送入选定的细胞中以消除。皂素是一种核糖体失活蛋白,当其进入细胞内时会导致蛋白质合成抑制和细胞死亡。链霉亲和素-皂素与生物素化的细胞表面标记分子混合,可产生强大的结合物,可用于体外和体内行为和疾病研究。链霉亲和素-皂素利用皂素的“分子手术”功能,创建了模块化靶向毒素库,可用于从潜在疗法的筛选到行为研究和动物模型等各种应用。该试剂已成为学术界和工业界广泛发表和验证的资源。链霉亲和素-皂素的易用性和多样化功能继续对生命科学行业产生重大影响。
过去的一年是异常忙碌和卓有成效的一年,尽管我们与全国人民一样对 9·11 事件感到悲痛和担忧,但我们也要承认国家大气研究中心所取得的进展。我们已完成一项雄心勃勃、影响深远的未来研究方向战略计划,并启动了该计划中列出的几项最高优先级活动。我们通过聘用一批早期职业科学家来增加我们的人力资本。我们还通过国家科学基金会的支持投资了两个新的社区设施。我已成立了一个由杰出科学家、教育家、行业领袖和政策制定者组成的咨询委员会,为中心的未来发展方向提供建议和意见。今年年底,我们成功完成了国家科学基金会对我们的研究计划、我们对大气科学界的推广和支持以及我们的管理的审查。我想在下面简要介绍所有这些主题。我鼓励您阅读以下页面中有关所有这些活动的更多信息,以了解我们刚刚完成的全年情况。
在外部和内部空气动力学中,预测和控制边界层内的湍流发生都至关重要。1,2 数值研究在这两个领域都得到了卓有成效的应用,但实验是必不可少的,特别是当马赫数增加时。3,4 自然边界层转捩实验需要一种对转捩过程干扰尽可能小的设备。例如,在超音速马赫数下,设备不得产生强烈的压力波动,即它们的 RMS 应小于 p ∞ 的 1% 左右,5 且速度波动应受到限制。6 如果不是这样,p ′ 和 u ′ 对转捩过程的影响将阻碍将实验结果外推到实际飞行条件。 7 已经证明 7 超音速风洞试验段内压力波动的主要原因是试验段壁上的湍流边界层,它会将压力扰动辐射到测试物体上。因此,进行有意义的过渡实验的解决方案是保持这些壁上的边界层层流。也就是说,要有一个所谓的“安静的超音速风洞”。要达到这种安静程度,必须实现多个功能,通常需要进行调整、修正或改进和修改,然后才能明显发挥作用。8,9 另一方面,对于诱导边界层过渡实验,安静要求不那么严格
摘要:多形性胶质母细胞瘤 (GBM) 是一种 IV 级星形细胞瘤,是一种预后不良的致命脑肿瘤。尽管 GBM 的分子生物学最近取得了进展,但神经肿瘤学家可用于改善 GBM 患者生存率的治疗选择非常有限。与 GBM 发病机制有关的主要信号通路是雷帕霉素的机制靶点 (mTOR)。在临床前阶段,使用第一代 mTOR 抑制剂靶向 mTOR 通路的尝试似乎很有希望;然而,由于 GBM 的异质性、治疗逃逸机制、血脑屏障、药物相关毒性以及临床试验设计不完善等原因,临床试验结果令人失望。下一代 mTOR 抑制剂的开发及其在临床试验中的当前评估为实现 mTOR 抑制剂在 GBM 中的临床潜力带来了新的希望。与此同时,研究也在不断加深我们对胶质母细胞瘤中 mTOR 信号失调、其下游效应及其与其他信号通路相互作用的理解。因此,针对胶质母细胞瘤中的 mTOR 进行治疗最终是卓有成效还是徒劳无功仍有待观察。
主题 全球青年面临着未来的不确定性。欧盟必须支持和协调地方和国家行动,使这些青年能够尽可能充分地享有公共权利和自由,作为代际民主发展不可或缺的一部分。过去,各种形式的政治暴力都被认为是合理的,而今天,它们又被更新和改造,以激进化和俘获部分年轻人,使他们成为反对民主和仇恨多样性的工具。其他青少年暴力,特别是在多元文化环境中,是偏见和简单化反复出现的对象,必须通过包容性政策来解决。欧洲委员会在为基于权利的青年(和儿童)政策制定质量标准方面做出了卓有成效的工作,但这些标准并不总是得到有效利用。当前的机构行动似乎无法帮助克服最严重的威胁(当今的经济、战争或气候)来制定重要的个人和代际项目。一些解决方案必须包括欧洲福利体系的结构性改革以及对青年公民培训的支持,这有助于实现对气候、经济和政治正义的合理期望。
从历史角度来看,人工智能研究一直以认知科学领域的计算机科学家、心理学家、工程师、哲学家和生物学家之间的密切合作为基础。这种合作受到控制论方法对自然和人工系统研究的影响,多年来,在仿生学、机器人学、生物和神经启发系统以及更普遍的认知人工系统和系统科学领域形成了卓有成效的研究方向 [ 1 ][ 2 ]。然而,经过数十年的相互和开创性的合作,人工智能和认知科学已经产生了几个子学科,每个学科都有自己的目标、方法和评估标准。一方面,这种分裂促进了一些人工智能系统的发展,这些系统能够在受限领域(例如计算机视觉,或国际象棋、Jeopardy、围棋等游戏)产生超人的能力。但另一方面,它基于一种分而治之的方法,极大地阻碍了跨领域合作和科学努力,这些努力旨在更全面地了解自然和人工智能是什么,以及如何通过考虑来自自然界的见解来设计智能制品。然而,近年来,认知启发的人工系统领域重新引起了学术界和工业界的关注,人们普遍意识到需要在这个跨学科领域进行更多研究。事实上,用 Aaron Sloman 的话来说,“
设计机器人个性是一项多方面的挑战。每个与人类互动的机器人都是一个独立的物理存在,可能需要自己的个性。因此,机器人个性工程师面临的问题与人格心理学家的问题相反:机器人个性工程师需要将一批相同的机器人制造成个体个性,而不是对已经存在的个体个性进行全面而简约的描述。到目前为止,机器人个性研究在展示机器人个性的积极影响方面卓有成效,但在如何大规模设计机器人个性方面尚无进展。为了为大规模生产的机器人设计机器人个性,我们需要一个生成性个性模型,该模型具有将机器人的个体特征编码为个性特质的结构,并生成具有反映这些特征的个体间和个体内差异的行为。我们提出了一种由目标塑造的生成性人格模型,作为我们一直致力于的机器人人格人工智能的一部分,并且我们进行了测试,以调查当该模型用于通过人形机器人头部的非语言行为表达人格时,它实际上可以支持多少个个体人格。
肖恩·哈特诺尔。高能物理学和凝聚态物理学围绕着对称破缺和重正化群等共同的基本概念展开,并共享费曼图和拓扑等核心数学机制。这导致了这两个领域之间历史上卓有成效的交汇。在过去的几十年里,出现了两个新的联系点。首先,全息对偶性已经证实,黑洞视界的经典演化精确地捕捉了物质强量子相的耗散动力学。近年来,这种联系已经超越了简单的相关函数(描述粗粒度热平衡方法),转向了更细微的可观测量,可以探测多体量子混沌的特征。与这种转变密切相关的是 Sachdev-Ye-Kitaev (SYK) 模型的出现。该模型具有成熟的全息理论的许多特征(和局限性),但在微观上更接近传统的凝聚态哈密顿量,并且受到更大的技术控制。其次,多体量子纠缠同时成为这两个领域的组织原则。看来,支持全息引力出现的量子态具有纠缠结构,可能类似于物质拓扑非平凡相的纠缠结构。充实这种联系有望成为未来进步的源泉。