从历史角度来看,人工智能研究一直以认知科学领域的计算机科学家、心理学家、工程师、哲学家和生物学家之间的密切合作为基础。这种合作受到控制论方法对自然和人工系统研究的影响,多年来,在仿生学、机器人学、生物和神经启发系统以及更普遍的认知人工系统和系统科学领域形成了卓有成效的研究方向 [ 1 ][ 2 ]。然而,经过数十年的相互和开创性的合作,人工智能和认知科学已经产生了几个子学科,每个学科都有自己的目标、方法和评估标准。一方面,这种分裂促进了一些人工智能系统的发展,这些系统能够在受限领域(例如计算机视觉,或国际象棋、Jeopardy、围棋等游戏)产生超人的能力。但另一方面,它基于一种分而治之的方法,极大地阻碍了跨领域合作和科学努力,这些努力旨在更全面地了解自然和人工智能是什么,以及如何通过考虑来自自然界的见解来设计智能制品。然而,近年来,认知启发的人工系统领域重新引起了学术界和工业界的关注,人们普遍意识到需要在这个跨学科领域进行更多研究。事实上,用 Aaron Sloman 的话来说,“