大多数主要飞机制造商和航空电子系统供应商都在开发支持单人驾驶客机的技术。巴西航空工业公司航空市场情报副总裁 Luiz Sergio Chiessi 表示,他们希望在 2020-25 年实现单人驾驶能力 1,2 。其他项目已经研究了在巡航阶段在长途飞机上只使用一名驾驶舱机组人员的可行性(例如欧洲 ACROSS 项目:用于减轻压力和工作量的先进驾驶舱)。空客前首席技术官 Paul Eremenko 公开表示,制造商正在开发允许一名飞行员驾驶客机的技术 3 。在英国,ATI 资助的未来飞行甲板和开放飞行甲板项目正在开展一项工作,以确定单机组客机的技术要求和机组人员策略。然而,美国宇航局艾姆斯研究中心航空学主任托马斯·爱德华兹表示,单机组飞机才刚刚开始。他最终表示,问题不在于是否应采用单人操作,而是“一名飞行员是否是实现零飞行员的合理垫脚石?” 4。
摘要。随着人工智能 (AI) 和基于学习的系统的最新进展,各行各业已开始将 AI 组件集成到其产品和工作流程中。在可以频繁测试和开发的领域,这些系统已被证明非常有用,例如在汽车行业,车辆现在配备了先进的驾驶辅助系统 (ADAS),能够自动驾驶、路线规划以及与车道和其他车辆保持安全距离。然而,随着任务的安全关键方面增加,开发和测试基于 AI 的解决方案变得更加困难和昂贵。航空业就是这种情况,因此,开发必须在更长的时间内逐步进行。本文重点介绍在人类飞行员和潜在辅助系统之间创建界面,以帮助飞行员在复杂的飞行场景中导航。口头交流和增强现实 (AR) 被选为交流方式,口头交流以绿野仙踪 (WoOz) 的方式进行。该界面在飞行模拟器中进行了测试,并通过 NASA-TLX 和 SART 问卷就工作量和态势感知评估了其实用性。
推荐引用 推荐引用 Gearhart,Michael。(2018)。人为因素和单人操作之路。在 BSU 荣誉课程论文和项目中。第 286 项。可在以下网址获取:https://vc.bridgew.edu/honors_proj/286 版权所有 © 2018 Michael Gearhart
摘要。随着人工智能 (AI) 和基于学习的系统的最新进展,各行各业已开始将 AI 组件集成到其产品和工作流程中。在可以频繁测试和开发的领域,这些系统已被证明非常有用,例如在汽车行业,车辆现在配备了先进的驾驶辅助系统 (ADAS),能够自动驾驶、路线规划以及与车道和其他车辆保持安全距离。然而,随着任务的安全关键方面增加,开发和测试基于 AI 的解决方案变得更加困难和昂贵。航空业就是这种情况,因此,开发必须在更长的时间内逐步进行。本文重点介绍在人类飞行员和潜在辅助系统之间创建界面,以帮助飞行员在复杂的飞行场景中导航。口头交流和增强现实 (AR) 被选为交流方式,口头交流以绿野仙踪 (WoOz) 的方式进行。该界面在飞行模拟器中进行了测试,并通过 NASA-TLX 和 SART 问卷就工作量和态势感知评估了其实用性。
单飞行员操作 (SPO) 代表了不久的将来商业航空的可行概念。它将需要与当代航空公司飞行员不同的培训制度,因为单飞行员和远程操作员(包括调度员)的职责和伴随程序将在空中和地面上发生变化。对单飞行员和远程副驾驶培训建议的初步系统理论分析确定了两者的工作轮换协议。因此,飞行员仍然可以在特殊训练机队中接受新的单飞行员特定程序的培训,包括 SPO 中的学徒式培训。先进的新自动化工具将很难纳入培训。在此基础上,技能退化成为一个必须解决的问题。尽管如此,在 SPO 设计过程的早期深入研究不同概念时,可以通过应用工人能力分析来及早解决培训问题。在过去的二十年里,减少客机机组人员的研究一直很热门
推荐引用 推荐引用 Gearhart, Michael。(2018 年)。人为因素和单人驾驶操作之路。在 BSU 荣誉课程论文和项目中。第 286 项。可从以下网址获取:https://vc.bridgew.edu/honors_proj/286 版权所有 © 2018 Michael Gearhart
摘要 近年来,随着航班数量的增加,航空公司和飞机制造商面临着一个严峻的问题:飞行员短缺。解决这一问题的一个方法是减少飞机上的飞行员数量,转向单飞行员操作 (SPO)。然而,采用这种方法,必须保证飞行的安全和质量。由于驾驶任务的复杂性,需要一种人机协作的形式来为飞行员提供额外的帮助和见解。为此,寻找合适的人工智能 (AI) 解决方案是很自然的,因为该领域在过去几十年中随着机器学习和深度学习的兴起而迅速发展。这项任务的理想人工智能应该旨在改善人类的决策能力,并专注于与人类的互动,而不是简单地在没有人为干预的情况下实现流程自动化。这个特定的人工智能领域旨在与人类交流,被称为认知计算 (CC)。为此,可以采用多种技术来涵盖交互的不同方面。其中一项技术就是增强现实 (AR),截至目前,该技术已经足够成熟,可用于商业产品。因此,进行了一项实验来研究飞行员和 CC 队友之间的互动,并了解是否需要帮助才能安全过渡到 SPO。
自航空业诞生以来,驾驶舱操作经历了重大变化。由于航空电子设备和通信技术的改进,客机的发展导致机组人员数量逐渐减少。随着飞行工程师、领航员和无线电操作员被新的玻璃驾驶舱功能所取代,机上人员从 5 人减少到 3 人,然后又减少到 2 人。到目前为止,尽管系统可靠性不断提高,但这一数字尚未减少。事实上,商业航空业最近才开始对单飞行员操作 (SPO) 产生兴趣。目标是评估可以将副驾驶员职责重新分配给可靠和自动化子系统和/或地面支持操作员的强大解决方案。对 SPO 的这种吸引力主要源于现代航空业预计将面临的挑战,包括预计的合格飞行员短缺 51 和不断增加的 27 空中交通(图 1)。考虑到这一点,一些公司正在为向 SPO 过渡做准备,SPO 有可能在长期内节省大量成本 4。事实上,到目前为止,许多专家都同意将这一变化视为一种经济效益。例如,瑞士联合银行 (UBS) 进行的一项研究表明,通过在商用航空中引入 SPO,全球航空公司将在长期内节省 150 亿美元 38 的运营成本。然而,尽管有这些潜在的好处,但关于安全性和人为因素的争论仍在继续,SPO 的技术、操作和商业可行性尚未得到证实。相反,所谓的扩展最低机组运营 (eMCO) 概念正在经历一个不那么麻烦的开发过程,它基于对现有设计的改进,其中 SPO 将仅限于飞行的巡航阶段(例如长途、跨大陆航班)。由于缺乏冗余副驾驶员交叉核对功能,单飞行员操作面临的主要挑战之一将是评估和预测单飞行员的任何高工作负荷情况,以便保持其对任务计划的心理状态并正确处理突然失能事件。此外,由于自动化将接管副驾驶员的一些任务,因此有必要设计一个合适的人机界面 (HMI),以适应操作员的心理状态。其他挑战通常与操作、通信程序和流程以及飞行员/机组人员的培训要求和系统完整性有关。向单飞行员操作的过渡还将需要彻底修改认证范式,考虑到从审议/反应系统向可根据操作条件扩展的混合自主系统的转变。目前,人们正在付出大量努力来评估某些新型飞行辅助系统的运行潜力,这些系统可以作为满足 SPO 提出的新要求的一种手段。学术界和工业界目前正在研究所谓的数字飞行助手 (DFA) 操作概念,以降低驾驶舱的复杂性并在紧张的决策过程中为飞行员提供支持,包括可能导致失能的决策过程。该系统通常旨在执行任务或基于传感器的飞行员认知状态实时评估,以提供特定警报,防止混乱或失去意识。