垂直农场(VF)的农业生产将在防止环境危机,良好的治理和维持世界上所有人的粮食安全方面发挥重要作用。吉兰省的生态足迹大大超过了其生物学能力,表明其自然资源和生态系统的压力很大。这个问题主要是由于在农业领域使用传统生产方法,需要改变生活方式和生产方法。当前研究的目的是借助优势,劣势,机遇和威胁(SWOT)模型和定量战略规划矩阵(QSPM)的VF在吉兰省的实现。在确定了影响VF产量的内部因素(优势和劣势)和外部因素(机会和威胁)之后,确定了必要的策略,然后使用QSPM矩阵确定了优先级。通过书面科学来源和调查研究进行了必要的信息,这些信息基于两种地理和农村计划教授之间的关键问题,工厂生产部门的水资源工程,土壤,建筑和专家以及环境部门负责人,吉兰省的圣战农业组织以及该组织食品卫生。参加调查的统计人群为30人。研究结果表明,根据优势,劣势,机遇和威胁制定了7种策略,并根据QSPM表中四种策略的重要性进行了优先排序。确保吉兰省粮食安全的首要任务是专注于提高单位面积的农业生产率。考虑到该地区的所有权挑战和有限的土地可用性,该策略至关重要。因此,应将提高单位面积的生产率提高,以满足人口的粮食需求。吉兰省VF生产的策略是一种竞争激烈的战略,并且在这种情况下需要吸引必要的资金。本研究通过对吉兰省垂直农业的可行性进行全面评估来填补研究空白。强调方法论,战略规划以及应对粮食安全和环境挑战的重视有助于现有知识体系。通过强调研究发现的可转移性和适应性,其他研究人员可以利用甲基苯丙胺并将策略调整到自己的地区,从而在可疑的农业领域进行进一步的研究和进步。
Ni 前驱体采用一步水热法制备(如图 S1† 所示)。首先,将 0.4 g 尿素和 0.58 g NiNO3$6H2O 在 3 mL 乙醇和 37 mL 纯净水的混合物中搅拌 60 分钟。然后,将该溶液和矩形 Ni 泡沫基底转移到高压釜中,以 3 C min-1 的升温速率加热至 180 C,并在 180 C 下保温 18 小时。第三,将产物从高压釜中取出,用超声波清洗 10 分钟,以去除表面的松散产物。然后将 Ni 前驱体和 Na2S 溶液转移到高压釜中,在 120 C 下加热并保温 3 小时,从而制备出 NiS 纳米片。最后,用去离子水清洗所得样品并在 60 C 下干燥以进一步表征。 Ni泡沫上NiS的质量负载约为28mg,面积负载约为3.2cm2,计算得出单位面积质量负载为8.8mg/cm2。
这项研究的目的是确定阿根廷省的小麦种植对小麦种植的影响。一种由Trichoderma属属的生物学真菌菌株组成的接种剂。,氮杂性巴西菌的细菌菌株,thurigiensis芽孢杆菌,根茎豆科植物和bradyrhizobium sp。被使用。一种随机块设计与两种治疗和三种复制:一种用微生物联盟接种和另一种对照治疗进行治疗。播种后5和43天进行了两次申请。该研究评估了小麦的产量变量(总谷物产量,1000粒的重量,每个峰值的谷物数量,单位面积的峰值数量和收获指数)以及小麦植物的生长和发育变量(根重量和空中生物质体重)。结果表明,与对照处理相比,微生物联盟的应用显着提高了小麦植物的产量,生长和发育。确定所选天然微生物的应用具有植物生长的作用,从而提高了小麦作物的生长和生产力。
农业部门占全球国内生产总值的三分之一左右。然而,人口增长趋势导致粮食需求量增加。土壤质量、养分供应、环境条件以及土壤的生物健康是提高单位面积作物产量以实现粮食安全目标的重要标准,尽管化学肥料的养分含量高,能够加快作物的生长速度,但大量使用化学肥料也被证明会对土壤质量、土壤养分、水、环境以及最终的植物和人类健康产生有害影响。生物肥料是这些肥料的替代品,由于其具有环保、经济高效和易于在农业领域应用等特点,如今应运而生。生物肥料是一批多样化的微生物,即使在非生物胁迫条件下,也可以促进植物生长和土壤健康。所有这些都使它们在可持续农业中变得越来越重要。在大多数农业系统中,氮通常是决定作物产量的限制性养分;这就是为什么从多个角度讨论了增强氮营养和增强磷营养的生物肥料。本研究旨在探索微生物生物肥料在农业应用和粮食安全整体解决方案的潜力和前景。
2014-15 年至 2019-2020 年,中央邦达蒂亚的 Krishi Vigyan Kendra 连续五年在达蒂亚县农田对芥菜品种 RVM-2 和 NRCHB-101 进行了 517 次示范,以了解改良技术的价值。分析了技术影响、经济影响和推广差距等参数,并评估了示范技术在基层的可行性。五年研究的结果表明,示范地块的产量为 19.79 q/公顷,而传统农耕地块的产量为 15.77 q/公顷。4.02 q/公顷的额外产量和芥菜平均产量的提高 25.24% 可能有助于满足目前全国的油籽需求。技术差距、推广差距和技术指数的平均值分别为 287.00 公斤/公顷、401.75 公斤/公顷和 12.70%。每公顷额外投资 1633 卢比,加上示范的科学监测和非货币因素,每公顷额外净收益为 12884 卢比。不同年份芥菜销售价格的波动影响了单位面积的经济回报。五年总体平均增量效益成本比为 3.28。结果清楚地表明 FLD 比现有做法具有积极作用。
摘要 — 无人驾驶飞行器 (UAV) 集群通常用于离网场景,例如灾难发生、战争肆虐或农村地区,在这些地方,无人机无法接入电网,只能依靠可再生能源。考虑到主电池由两种可再生能源(风能和太阳能)供电,我们根据财务预算、环境特征和季节变化来扩展此类系统。有趣的是,能源来源与无人机的能量消耗相关,因为强风会导致无人机悬停变得越来越耗能。目标是最大限度地提高特定位置的覆盖成本效率,这是一个组合优化问题,用于在非凸标准下确定多元能源发电系统的尺寸。我们设计了一种定制算法,通过抽样降低处理复杂度并减少解决方案空间。评估是使用供应商提供的价格驱动的风能、太阳能和单位面积交通负荷的浓缩真实数据进行的。该项目在四个风力或太阳能强度不同的地点进行了测试。风力较小、太阳辐射强的地点效果最好,而风力强、太阳辐射低的地点则需要更高的资本支出 (CAPEX) 分配。
激光雷达是测量植被下方裸地高程和结构的最佳技术。因此,机载激光扫描 (ALS) 被广泛应用于各种应用。然而,由于单位面积成本高,ALS 无法在全球范围内使用,也不经常更新。星载激光雷达可以绘制全球地图,但能量需求限制了现有的星载激光雷达只能进行稀疏采样任务,不适合许多常见的 ALS 应用。本文推导出计算激光雷达卫星在给定一组特性(开源发布)下可以实现的覆盖范围的方程式,然后使用云图确定在一定时间范围内实现连续全球覆盖所需的卫星数量。利用现有在轨技术的特性,单个激光雷达卫星在生成 30 米分辨率地图时可以具有 300 米的连续扫描宽度。因此,每 5 年需要 12 颗卫星来生成连续地图,而 5 米分辨率则需要 418 颗卫星。建造 12 个目前在轨的激光雷达系统可能成本过高,因此本文讨论了降低全球激光雷达系统 (GLS) 成本的技术发展潜力。一旦这些技术达到足够的准备水平,就可以经济高效地实现 GLS。
摘要 - 在锂离子(锂离子)电池模型的领域,由于其简单性,长期以来,单个粒子模型(SPM)被认为是在嵌入式应用中迎来物理启发模型(PIMS)时代的有希望的减少订单模型(ROM)候选者。然而,在高负载电流下,标准SPM在计算电池的端子电压时表现出较差的精度,从而使其不合适,可以作为植物模型在状态估计任务中。对文献的显着电解质增强SPM的全面评估表明,当前的解决方案在数学上是棘手的或过于简单的。对于电解质中的离子浓度,跨越计算复杂性和数学障碍的边界的众所周知的二次近似模型显示出时间性能较差,尤其是在当前的集电极接口上。在这项工作中,我们保留了二次近似模型的空间动力学,同时使用系统识别技术为其时间动力学提出了一种新颖的方法。通过使用相关子系统的线性近似值,我们确定了每个电极区域内电解质中锂离子单位面积的摩尔数的离散时间传递函数,从而提高了电解质浓度的时空精度。然后,我们使用新的系统识别电解质动力学增强标准SPM,以达到电解质增强的复合单粒子模型(EECSPM)。最后,与现有的最先进的面前相比,我们将表现出EECSPM的出色性能,从而代表了在实时应用程序中使用PIMS的具体目标。
虽然半导体电路的小型化仍在继续,但它已不再遵循摩尔定律,摩尔定律预测每 18 个月单位面积晶体管数量将翻一番。这种小型化必须在可预见的未来达到其物理极限。克服这一障碍的一种可能途径是使用分子电子学,其中单个分子将充当电子设备的构建块,例如晶体管或存储元件。张 1 最近的一篇评论文章展示了一个活跃的研究领域。Schaub 等人 2,3 报道了一种可控开关,由沉积在 Cu-(110) 表面上的偶氮苯分子组成。如果施加大于 0.3 V 的电压,则可以产生两种对称性相关的互变异构体中的一种,具体取决于扫描隧道显微镜 (STM) 尖端的位置。较小的电压允许在不改变分子的情况下确定其当前的互变异构状态。翻译成计算语言,这构成了一个可以写入和读取的存储元件。不幸的是,STM 尖端需要移动到分子上方的正确位置,这使得操作无法以可能与当前微电子器件相媲美的频率进行。另一个问题是,电导率的变化只与表面垂直的方向有关,因为支撑金属会使任何平行于表面的电压短路。为了制造出可用于电子设备的分子,必须具备三个先决条件:双稳态、
J. Biosci. ,第 21 卷,第 4 期,1996 年 6 月,第 535-561 页。© 印度印刷。使用卫星遥感数据估算生物量——对天然森林可能方法的调查 P S ROY † 和 SHIRISH A RAVAN* 印度遥感研究所林业和生态部,4, Kalidas Road,Dehra Dun 248 001,印度 *遥感/GIS 分析师,世界自然基金会,172 B,Lodi Estate,Max Mueller Marg,新德里 110003,印度 1995 年 7 月 17 日收到 MS;1996 年 3 月 23 日修订 摘要。植被类型及其生物量被认为是影响生物圈-大气相互作用的重要组成部分。单位面积生物量和生产力的测量已经被设定为国际地圈-生物圈计划 (IGBP) 的目标之一。然而,地面生物量评估不足以呈现生物量的空间范围。本研究提出了使用卫星遥感数据对马达夫国家公园 (MP) 区域生物量进行测绘的方法。在第一种方法中,使用卫星遥感测绘的均质植被层中的分层随机抽样已被有效利用来推断采样点生物量观测值。在第二种方法中,尝试开发具有卫星测量光谱响应和生物量的经验模型。结果表明,与光谱响应存在显着关系。这些关系在不同的物候学中具有季节性依赖性