光子是理想的信息载体,因为它们之间的超快传输速度和最小的相互作用。光子携带的信息按频率,振幅和相位调制编码为波。通过右圆极化分类的光学手性提供了额外的编码能力。1特别是将光的手性与单光子发射结合起来,为量子光学的研究创造了新的最前沿。单光子源为在单Quanta级别操纵光与互动的网关打开了网关。量子状态的叠加和纠缠特性的研究增强了安全的通信和量子计算。从这个角度来看,我们重点介绍了手性光生成器的最新进展,并讨论了将手性单光子用于未来应用的可能性。
如果一个光场恰好包含 k 个光子,则它处于 k -光子态。由于其高度量子化的特性,光子态在量子通信、计算、计量和模拟方面有着广阔的应用前景。最近,人们对各种光子态的产生和操纵的兴趣日益浓厚。控制工程领域的一个新的重要问题是:如何分析和合成由光子态驱动的量子系统以实现预定的控制性能?在本综述中,我们引入了单光子态,并展示了量子线性系统如何处理单光子输入,以及如何使用线性相干反馈网络来塑造单光子的时间脉冲。我们还介绍了一种单光子滤波器。(本综述的扩展版本可在 arXiv:1902.10961 找到。)
量子点发光二极管(QD-LED)是日常生活中使用的显示设备的例子。作为设备中使用的最新一代发光二极管(LED),量子点发光二极管(QD-LED)具有色域纯正(即颜色可通过尺寸调谐,半峰全宽(FWHM)约为几十纳米)[9]、与高清屏幕、虚拟/增强现实集成度高[4]、量子效率高、发射明亮[9]等特点,具有很好的应用潜力。自然而然,分子作为基本量子体系,启发人们只用一个分子来构造LED的概念,即单分子发光二极管(SM-LED)。它具有更高的原子经济性和集成度、通过精确有机合成可调的色纯度、可控的能带排列、避免分子间荧光猝灭等特点。[9]事实上,我们看到的物理世界就是由分子构成。因此,用单个分子作为显示像素最能体现现实世界,这也是显示器件的终极目标。然而,分子水平上的器件工程一直不是一项简单的任务。这种工程的典型例子是硅基微电子器件的小型化和摩尔定律的延续。[10]为此,通过自下而上的途径制备多功能分子器件是一种很有前途的策略。[11,12]受由单个D–σ–A分子组成的整流器的初始理论提议的推动[13],各种功能性单分子器件,如场效应晶体管[14,15]、整流器[16,17]、开关[18,19]和忆阻器[20],已通过长期优化功能分子中心、电极材料和界面耦合而不断改进。[11,12,21]
近年来,光学量子增强计量和亚散粒噪声计量变得越来越重要。然而,相关的测量技术尚未在 NMI 中普遍应用,主要是因为可用的相关源,即高效单光子源和纠缠光子源,不可靠或无法商业化。在设计这些源方面已经取得了重大进展,但如果要将它们用于计量应用,则需要进一步开发。针对此 SRT 的提案应旨在基于不同的应用导向平台开发明亮的纠缠光子源,并利用高纯度的单光子源,以展示使用这些源进行特定测量可实现的量子优势。
PMT数据:物理研究中的核仪器和方法A:加速器,光谱仪,检测器和相关设备,926,2-15。spad数据:芯片(2022):100005。TES数据:量子光学中的超导设备(2016):31-60。其他缺失的数据:自然光子学3.12(2009):696-705。
本期特刊是 2011 年 6 月在德国联邦物理技术研究院 (PTB) 举行的第五届单光子技术国际会议的配套刊物。该团体每两年在国家计量机构举行一次会议,第一次会议于 2003 年在美国国家标准与技术研究所 (NIST,盖瑟斯堡) 举行,随后于 2005 年在国家物理实验室 (NPL) 举行,2007 年在国家计量研究所 (INRiM) 举行,2009 年在美国国家标准与技术研究所 (NIST,博尔德) 举行。这些研讨会的目的是将对单光子技术和应用感兴趣的广泛人士聚集在一起,帮助传播该领域的进展。2011 年研讨会在 15 场会议中共发表了 67 场演讲(14 场受邀演讲)和 16 场海报展示。共有来自 15 个国家的 109 名参与者参加,其中 71 名来自欧洲(主要群体为德国 22 名、意大利 17 名和英国 11 名),30 名来自北美(美国 27 名),6 名来自亚洲,2 名来自澳大利亚。迄今为止,每次研讨会之后都会出版关于单光子科学和技术科学领域的精选论文集,每篇论文都涉及特定主题。这些特刊中的第一期紧随 2003 年研讨会之后,主要涉及使用半导体器件的单光子检测,这在很大程度上是因为这是当时最发达的技术 [1]。第二期特刊更侧重于单光子源,反映了 2005 年研讨会上的大量贡献 [2]。超导探测器在 2007 年研讨会之后的第三期中成为焦点,该研讨会与欧盟第七框架项目 Sinphonia [3] 联合举办。2009 年,有多个单光子技术领域出现在特刊中,例如光子纠缠技术及应用、非经典性测量;相关、纠缠和可分解状态源设计作为基础物理测试 [4]。第 5 届单光子器件和应用研讨会专门讨论了单光子探测器和源的当前技术水平和最新发展,重点关注现有的限制、不足和改进机会。这些发展是由许多需要此类设备的应用的出现所驱动的。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的设备示意图。 b ,在 56 µ m × 56 µ m 上,能量范围在 1.525eV 和 1.734eV 之间的光致发光强度云图。白色虚线标记了潜在的单层区域。c ,WSe 2 单层中局部发射极在 4.5K 下的光致发光光谱,随着激光功率的增加显示出不同的发射行为,以 1.7167eV(P1)和 1.7206eV(P2)处的峰值为主。d ,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,P1 和 P2 的光子发射的积分计数随着激光功率的增加显示出超线性和亚线性行为
太初有光。光是美好的。此后不久,人们开始寻求对光的全面理解。虽然出版记录一开始有些零散,但公元前五世纪,希腊哲学家恩培多克勒得出结论,光由从眼睛发出的光线组成。欧几里得在其关于光传播的经典著作《光学》中,使用今天可能被称为局部现实主义的论证对这一观点提出了质疑。欧几里得假设光线是由外部光源发出的。但直到公元 1000 年伊本·海赛姆 (Ibn al-Haytham) 提出这一观点后,这一观点才被确立为科学依据。17 世纪的笛卡尔将光本身的特性描述为“压力”,它通过空间从光源传输到眼睛(探测器)。这个想法后来由惠更斯和胡克发展成为光的波动理论。大约在同一时间,伽森狄提出了相反的观点,即光是一种粒子,牛顿接受了这一观点并进一步发展了这一观点。杨氏 1803 年的双缝实验和菲涅尔的衍射实验普遍认为,光作为粒子和波的不同视角已经得到解决,有利于波动图像。在 19 世纪 60 年代,麦克斯韦方程以一种优雅而令人满意的方式进一步证实了这一结论:预测以光速传播的偏振电磁波。1897 年,J.J. Thomson 发现离散粒子携带负电荷在真空中移动,电磁学的波与流体观由此出现问题。随后在 1900 年,普朗克在“绝望之举”中援引了量化的电磁能量束来推导黑体辐射定律 [2, 3],这一步不仅包含了玻尔兹曼在统计力学中的先前猜想,而且与传统理解背道而驰。它最初被认为是推导的产物,后来得到纠正,但爱因斯坦在 1905 年对光电效应的描述 [4] 中更加认真地对待光量子理论。随后在 1913 年,玻尔援引了能量和角动量的量化来解释在氢-巴尔末系列中观察到的离散光谱发射线。1924 年,德布罗意基于这些想法假设不仅光,而且物质粒子也具有波状特性,这一假设彻底失败了。随后出现了量子光,这真是太棒了。随后,海森堡、玻恩、薛定谔、泡利和狄拉克等一系列发现和进步建立了量子力学的框架。就本书而言,1927 年,狄拉克将电磁场量化,有效地发展了光理论,涵盖了引发整个革命的物理现象。20 世纪 30 年代,首次在单光子水平上直接探测到光。20 世纪 50 年代原子级联光子对源 [5] 的出现及其在 20 世纪 70 年代和 80 年代的使用 [6–9] 使第一个单光子源问世。
纠缠是量子力学的核心,其最重要的用途之一是检验贝尔不等式,以进一步加深我们对现实和局域性的理解 [ 1 ]。最常见的方法是,通过检查一对纠缠光子之间的相关性来进行该测试 [ 2 ]。尽管自 20 世纪 70 年代和 80 年代的开创性工作以来,已经对贝尔不等式进行了许多测试 [ 3 – 5 ],但尚未取得无条件的结果。一个根本原因是,在此类测试中产生的很大一部分光子在测量过程中未被检测到。虽然测量到的相关性可以用量子力学来解释,而且大多数人认为量子力学确实是这些相关性背后的机制,但低测量效率确实为巧妙设计的局部隐变量理论提供了可能性,该理论可以在不借助量子力学的情况下重现观察到的相关性 [ 6 , 7 ]。要使用 Bell 的原始方案来弥补漏洞,从光子的产生到探测,总效率至少需要达到 83% [ 1 ]。通过利用非最大纠缠,Eberhard 能够将这个效率要求放宽到 67% [ 8 ]。但即使是这个更温和的效率要求仍然是一个极其困难的技术挑战,直到最近才得以实现 [ 9 , 10 ]。虽然这足以弥补检测漏洞,但许多提议的量子信息应用还有一项额外要求,即光子处于单一光学空间模式。在本信中,我们报告了对称、单空间的实验演示 -
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。