首先引入时,单光子计数检测器在同步基因上重塑晶体学。他们的快速读数速度启用了,例如,旋转角度的无快速数据收集和切片,并增强了新实验技术(如Ptychography)的开发。在最佳条件下,单光子计数检测器提供无限的动态范围,图像噪声仅受传入光子的泊松统计限制。从单个光子中计算脉冲,从本质上讲是使探测器如此成功的原因,也会引起主要缺点,这是由于模拟前端脉冲堆积而导致的高光子弹药效率的丧失。要充分利用衍射限制的光源,下一代单光子计数器需要以与增加的伏特量相同的数量级来提高其计数率能力。此外,由于较高的频道,需要快速帧速率(几个kHz)才能应对较短的停留时间。带有多个比较器和计数器的检测器架构可以为能量分辨成像打开新的可能性,而像素间交流可以克服收费共享和降低像素角效率损失引起的问题。将单光子计数检测器耦合到高Z传感器,以进行硬X射线检测(> 20 keV)和低增益的雪崩二极管(LGADS)以进行软X射线,以利用全部辐射光谱的新光源的增加。在本文中,我们提出了提高第四代同步源的单光子计数检测器性能的可能策略,并将它们比较它们以对集成检测器充电。
摘要 - 超导纳米电视单光子探测器(SNSPDS)的可伸缩性,可重复性和操作温度一直是自设备首次提出以来的主要研究目标。最近将氦离子辐照作为SNSPD的后处理技术的创新可以使高检测效率更容易复制,但仍然知之甚少。此外,从高-T C材料中以微米范围的尺度制造探测器可以分别提高可伸缩性和工作温度。同时,在宽电线和诸如Diboride镁之类的更高T材料中制造成功的设备已被证明已被证明。在这项工作中,我们比较了硝酸氮化物和二吡啶镁探测器中的氦离子辐照,并与不同的材料堆栈进行了比较,以便更好地了解辐照的机制以及在有效剂量上封装层的实际意义。我们检查了实验有效剂量测试的效果,并将这些结果与相应材料堆栈中模拟预测的损伤进行了比较。在两种材料中,辐照都会导致计数率的提高,尽管对于硝酸盐而言,即使在测试最高的剂量为2的最高剂量下,这种增加也没有完全饱和。6×10 17离子/cm 2,而对于抗封闭的二氨基镁,即使是测试的最低剂量为1×10 15离子/cm 2的最低剂量似乎高于最佳。我们的结果证明了氦离子辐照到截然不同的设备和材料堆栈中的一般适用性,尽管具有不同的最佳剂量,并显示了这种后加工技术在显着提高SNSPD效率方面的可重复性和有效性。
量子安全直接通信(QSDC)可以利用量子力学的特性保证信息在不使用密钥的情况下直接通过量子信道传输时的安全性。然而,QSDC的传输速率受到单光子探测器(SPD)的死时间和长距离信道损耗的限制。为了克服这种有限的传输速率,我们提出了一种基于高维单光子的QSDC协议,该协议应用了两个光学自由度:时间和相位状态。首先,提出了一种考虑死时间的N维时间和相位状态生成方法,以最小化传输信息的测量损失。其次,在两类量子态中,测量效率相对较低的相位状态仅用于窃听检测,时间状态用于使用差分延迟时间基于二进制的编码技术发送信息。最后,我们提出了一种有效的方法来测量N维时间和基于相位的量子态并恢复经典比特信息。本研究对各种攻击进行了安全性分析,并通过仿真验证了传输速率的提升效果。结果表明,与传统的DL04 QSDC相比,我们的方案可以保证更高的安全性和传输速率。
摘要 - 在直接的飞行时间单光子激光雷达中,通常使用photon检测时间来估计深度,而检测的数量则用于估计反射率。本文通过提出新的估计量并通过新的分析来统一先前的结果,从而在反射率估算中使用检测时间在反射率估算中使用。在低流量制度中,死亡时间可以忽略不计,我们检查了反射率估计的cram'errao。当深度未知时,我们表明基于检查的估计器几乎可以执行和最大似然估计器,而且令人惊讶的是,不正确的深度估计可以减少反射率估计的均值误差。我们还检查了信号和背景通量的联合估计,我们提出的基于审查的估计器以及最大似然估计器的表现。在高流量制度中,死亡时间不可忽略,我们将检测时间建模为马尔可夫链,并检查一些利用检测时间的反射率估计值。
4 实验装置和硬件 15 4.1 主光学布局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... 22 4.3.6 干涉仪....................................................................................................................................................................................................................................................................24 4.4 主光学装置调准过程....................................................................................................................................................................................................................................................24 4.5 二次装置调准....................................................................................................................................................................................................................................................................24 4.5 二次装置调准.................................................................................................................................................................................................................................................................................... ...26
摘要:随着对在各个领域的单光子水平检测光的需求不断增长,研究人员致力于通过使用多种方法来优化超导单光子检测器(SSPD)的性能。但是,可见光的输入光耦合在有效SSPD的发展中仍然是一个挑战。为了克服这些局限性,我们开发了一种新型系统,该系统将NBN超导微孔光子检测器(SMPD)与Gap-plasmon reso-nators整合在一起,以将光子检测效率提高到98%,同时将所有检测器性能特征(例如偏振性无敏化)保留。等离子SMPD表现出热带效应,与在9 K(〜0.64 t C)下运行的可见范围内产生非线性光响应,与在CW Illumination CW下的原始SMPD相比,声子 - 电子相互作用因子(γ)增加了233倍。这些发现为在可见的波长下的量子信息处理,量子光学元件,成像和感测等领域提供了超敏感单光子检测的新机会。关键字:单光子检测,可见光,间隙 - 平面共振,超导光电探测器,NBN,非线性光载质
在量子状图林基中开发的Spad evalkit基于单个光子计数的时角的过程,并以20 picose第二的时间分辨率启用测量。这允许研究基于量子的应用程序,以及用于视野内诊断的新解决方案或医疗技术。照片:Imms。
在过去的二十年中,Medipix 已建立了四个连续的合作项目。这些合作旨在利用从高能物理学进步中获得的知识来开发尖端的混合像素探测器,从而能够精确探测每个事件中的单个 X 射线光子或粒子[1]。这些技术在多个科学领域有广泛的应用,包括医学成像、同步加速器 X 射线相机、基于 X 射线的材料分析、电子显微镜等。首先,Medipix1 芯片演示了在 170 µ m 像素间距内单光子计数架构的原理,并展示了通过使用脉冲处理前端在将检测阈值设置在远高于背景噪声水平的情况下实现无噪声 X 射线成像的可行性[2]。Medipix2 通过使用每像素双阈值证明了在 55 µ m 紧凑像素间距下进行光谱成像的可行性[3]。然而,由于电荷收集过程中的扩散以及高 Z 材料中的荧光光子,像素尺寸的减小导致像素间出现严重的电荷共享 [4,5]。随着 Medipix3RX 的推出,读出电子器件从单光子计数转变为单光子处理架构。一种直接在 55 µ m 像素上实施像素间算法的新方案消除了电荷扩散产生的能谱畸变 [6,7]。Medipix3RX 还引入了将 4 个像素中的 1 个连接到像素间距为 110 µ m 的传感器的选项。尽管如此,Medipix3RX 探测器只能在三侧邻接,因为芯片的一侧保留用于控制逻辑和 I/O。这使连续大面积探测器的实现变得复杂。本文介绍的 Medipix4 延续了 Timepix4 芯片的进步,使专用集成电路 (ASIC) 能够沿四侧覆盖,同时将死区降至最低 [8]。医学 X 射线计算机断层扫描 (CT) 和 X 射线成像的另一个限制因素是脉冲堆积,这是由于
该手稿由UT-Battelle,LLC部分撰写,根据与美国能源部(DOE)合同DE-AC05- 00OR22725。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了非判定,有偿,不可撤销的,全球范围内的许可,以出版或复制本手稿的已发表形式,或允许其他人这样做,以实现美国政府的目的。DOE将根据DOE公共访问计划(http://energy.gov/downloads/doe-public-access-plan),将公开访问联邦赞助研究结果。
量子密钥分发 (QKD) 在经过验证的用户之间共享安全密钥,通过量子力学的假设实现无条件安全性,不同于以计算复杂性为整个加密系统基础的经典密码学。许多研究团体 [5,6,40] 在现实场景下进行了安全测试和详细分析,并得出结论,源特性(例如单个或纠缠光子)是任何量子密码系统性能的决定因素之一。量子密钥分发于 1992 年首次实现 [1],并在 [16-18, 20, 40] 中进行了所需的改进。量子技术如今已部署在许多工业应用中 [25]。1550 nm 的波长是量子通信实际部署的理想波长,因为与损耗更高的 1300 nm 波长(0.35 dB/km)相比,它的损耗更小(0.2 dB/km)。有各种基于单光子的量子密钥分发系统。