Loading...
机构名称:
¥ 1.0

在过去的二十年中,Medipix 已建立了四个连续的合作项目。这些合作旨在利用从高能物理学进步中获得的知识来开发尖端的混合像素探测器,从而能够精确探测每个事件中的单个 X 射线光子或粒子[1]。这些技术在多个科学领域有广泛的应用,包括医学成像、同步加速器 X 射线相机、基于 X 射线的材料分析、电子显微镜等。首先,Medipix1 芯片演示了在 170 µ m 像素间距内单光子计数架构的原理,并展示了通过使用脉冲处理前端在将检测阈值设置在远高于背景噪声水平的情况下实现无噪声 X 射线成像的可行性[2]。Medipix2 通过使用每像素双阈值证明了在 55 µ m 紧凑像素间距下进行光谱成像的可行性[3]。然而,由于电荷收集过程中的扩散以及高 Z 材料中的荧光光子,像素尺寸的减小导致像素间出现严重的电荷共享 [4,5]。随着 Medipix3RX 的推出,读出电子器件从单光子计数转变为单光子处理架构。一种直接在 55 µ m 像素上实施像素间算法的新方案消除了电荷扩散产生的能谱畸变 [6,7]。Medipix3RX 还引入了将 4 个像素中的 1 个连接到像素间距为 110 µ m 的传感器的选项。尽管如此,Medipix3RX 探测器只能在三侧邻接,因为芯片的一侧保留用于控制逻辑和 I/O。这使连续大面积探测器的实现变得复杂。本文介绍的 Medipix4 延续了 Timepix4 芯片的进步,使专用集成电路 (ASIC) 能够沿四侧覆盖,同时将死区降至最低 [8]。医学 X 射线计算机断层扫描 (CT) 和 X 射线成像的另一个限制因素是脉冲堆积,这是由于

高速率、高分辨率单光子 X 射线成像

高速率、高分辨率单光子 X 射线成像PDF文件第1页

高速率、高分辨率单光子 X 射线成像PDF文件第2页

高速率、高分辨率单光子 X 射线成像PDF文件第3页

高速率、高分辨率单光子 X 射线成像PDF文件第4页

高速率、高分辨率单光子 X 射线成像PDF文件第5页

相关文件推荐