摘要 :遥感卫星图像在数量、质量和应用方面发展迅速,用于检测和提取地球表面各种自然和人工特征,如车辆、建筑物、树木、道路、水、飞机、船舶。这些卫星图像为城市规划、灾害管理和环境管理等各种应用提供了重要信息。研究人员引入了不同的算法和方法来从卫星图像中提取指定的特征。在城市场景中,建筑物是最重要的基本结构之一,在城市发展、城市规划、气候研究、灾害管理、地图制作、土地利用分析和变化检测领域发挥着重要作用。该研究的目的是采用机器学习算法提取建筑物足迹。各种研究讨论了提取建筑物足迹的各种方法然而,从大都市提取建筑物屋顶一直是一项艰巨的任务,因为建筑物屋顶具有不同的形状、大小和光谱特性。除此之外,其他城市特征,如道路、荒地等,也表现出与建筑物屋顶相似的光谱特性。因此,建筑物提取技术已成为一个重要而棘手的研究问题,并得到了更好的认可。所提出的技术使用机器学习算法对建筑物和非建筑物像素进行分类。为了消除错误检测的建筑物像素,使用了中值滤波、形态学算子和连通分量标记。该技术已根据像素和基于对象的标准进行评估,同时考虑了精度、召回率、建筑物(城市对象)的质量。
主要关键词