我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
1引言本文扩展了Bruza等人的先前工作。1通过对使用大型单光雪崩二极管(SPAD)摄像机进行荧光深度感测所涉及的方法和技术方面进行更全面的描述。此外,本文详细阐述了校准曲线的扩散,这是以前获得有限覆盖率的关键方面。还提供了对技术局限性的详尽回顾,并提供了支持其性能的定量测量简介。最后,本文提出了对临床方案中技术和潜在应用的潜在改进,为进一步的研究和实际实施提供了宝贵的见解。手术切除仍然是癌症治疗的关键方法;绝大多数乳腺癌,结直肠癌,肺和膀胱癌患者都接受了手术切除术,这是护理标准的一部分。2尽管术前成像已经显着提高,但手术的成功很大程度上取决于外科医生使用常规的白光视觉和触诊来定位病理的能力。3,4在过去的三十年中,荧光引导手术(FGS)已成为一种有前途的技术,用于定义肿瘤位置和术中边缘。使用FGS对肿瘤进行术中可视化不仅有可能实现完整的切除措施,还可以通过减少对正常组织的不必要损害,5 - 8
使用单光子发射计算机断层扫描(DATSPECT)的使用放射性药物ioflupane(123 I)注射是一种神经形成式的态度,以改善与帕克森氏症的差异诊断,使用parkinson nontr-parkinson and-parkinson,使用parkinson andr-parkinson and-parkinson,使用parkinson andr-parkinson and-parkinson,使用parkinson andr-parkinson and-parkinson,。来自阿尔茨海默氏病。 帕金森氏综合症帕金森综合症是一组疾病,具有相似的基本体征,其特征是胸肌,僵硬,静止震颤和步态障碍。 帕金森病(PD)是帕金森主义的最常见原因。 尽管有众所周知的PD症状,但即使对于经验丰富的临床医生,尤其是在疾病的早期,诊断也有挑战。 此外,其他病因,例如必需震颤,皮质型变性,多系统萎缩,进行性性核上麻痹,血管帕金森主义和药物诱导的帕金森主义可能会导致一系列类似的症状。 最近使用多巴胺转运蛋白成像使用单光子发射计算机断层扫描(DAT- SPECT)成像来评估PD和其他帕金森综合症的临床诊断准确性和其他帕金森综合症的准确性的最新方法。 痴呆症患有路易体的痴呆症(DLB)是一种痴呆症,其特征是帕金森氏症,视觉幻觉,认知波动,睡眠障碍和严重的神经感受敏感性。 dlb是退化性痴呆的第二大常见形式。阿尔茨海默氏病在发作时可能有类似的症状,是最常见的。使用放射性药物ioflupane(123 I)注射是一种神经形成式的态度,以改善与帕克森氏症的差异诊断,使用parkinson nontr-parkinson and-parkinson,使用parkinson andr-parkinson and-parkinson,使用parkinson andr-parkinson and-parkinson,使用parkinson andr-parkinson and-parkinson,。来自阿尔茨海默氏病。 帕金森氏综合症帕金森综合症是一组疾病,具有相似的基本体征,其特征是胸肌,僵硬,静止震颤和步态障碍。 帕金森病(PD)是帕金森主义的最常见原因。 尽管有众所周知的PD症状,但即使对于经验丰富的临床医生,尤其是在疾病的早期,诊断也有挑战。 此外,其他病因,例如必需震颤,皮质型变性,多系统萎缩,进行性性核上麻痹,血管帕金森主义和药物诱导的帕金森主义可能会导致一系列类似的症状。 最近使用多巴胺转运蛋白成像使用单光子发射计算机断层扫描(DAT- SPECT)成像来评估PD和其他帕金森综合症的临床诊断准确性和其他帕金森综合症的准确性的最新方法。 痴呆症患有路易体的痴呆症(DLB)是一种痴呆症,其特征是帕金森氏症,视觉幻觉,认知波动,睡眠障碍和严重的神经感受敏感性。 dlb是退化性痴呆的第二大常见形式。阿尔茨海默氏病在发作时可能有类似的症状,是最常见的。。来自阿尔茨海默氏病。帕金森氏综合症帕金森综合症是一组疾病,具有相似的基本体征,其特征是胸肌,僵硬,静止震颤和步态障碍。帕金森病(PD)是帕金森主义的最常见原因。尽管有众所周知的PD症状,但即使对于经验丰富的临床医生,尤其是在疾病的早期,诊断也有挑战。此外,其他病因,例如必需震颤,皮质型变性,多系统萎缩,进行性性核上麻痹,血管帕金森主义和药物诱导的帕金森主义可能会导致一系列类似的症状。最近使用多巴胺转运蛋白成像使用单光子发射计算机断层扫描(DAT- SPECT)成像来评估PD和其他帕金森综合症的临床诊断准确性和其他帕金森综合症的准确性的最新方法。痴呆症患有路易体的痴呆症(DLB)是一种痴呆症,其特征是帕金森氏症,视觉幻觉,认知波动,睡眠障碍和严重的神经感受敏感性。dlb是退化性痴呆的第二大常见形式。阿尔茨海默氏病在发作时可能有类似的症状,是最常见的。诊断可能具有挑战性,尤其是当患者患有多种合并症(包括
光合作用是由太阳的单个光子1-3引发的,作为弱光源,在叶绿素吸收带1中,每秒最多每秒几十个光子每秒传递几十个光子。在过去的40年中,在过去的40年中,许多实验和理论工作探索了在光合作用中吸收光合作用的事件,从而吸收了强烈的超短激光脉冲2-15。在这里,我们使用单个光子在环境条件下激发了紫色细菌的紫obacter sphaeroides的轻度收获2(LH2)复合物,分别包含9和18个细菌氯植物分子的B800和B850环。B800环的激发在大约0.7)ps中导致电子能量转移到B850环,然后在约100-FS的时间尺度上快速B850至B850 Energy Transfers在850–875时(参考)NM(参考)。16–19)。使用宣传的单光子源20,21以及一致计数,我们建立了B800激发和B850 Fuoresence发射的时间相关函数,并证明这两个事件都涉及单个光子。我们还表明,每个检测到的插入光子光子的概率分布支持这样一种观点,即吸收后单个光子可以驱动随后的能量传递和实现发射,因此,通过扩展,光合作用的主要电荷分离。一个分析随机模型和蒙特卡洛数值模型捕获了数据,进一步缔结了单个光子的吸收与自然光收获复合物中单个光子的发射相关。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
量子点是电信单光子源的有希望的候选者,因为它们的发射可以在不同的低损耗电信波段上进行调谐,从而与现有的光纤网络兼容。它们适合集成到光子结构中,可以通过 Purcell 效应增强亮度,从而支持高效的量子通信技术。我们的工作重点是通过液滴外延 MOVPE 创建的 InAs/InP QD,以在电信 C 波段内运行。我们观察到 340 ps 的短辐射寿命,这是由于 Purcell 因子为 5,这是由于 QD 集成在低模体积光子晶体腔内。通过对样品温度的原位控制,我们展示了 QD 发射波长的温度调谐和在高达 25K 的温度下保持的单光子发射纯度。这些发现表明基于 QD 的无低温 C 波段单光子源的可行性,支持其在量子通信技术中的应用。
a INFN Trieste Trieste Italy b University of Trieste and INFN Trieste Trieste Italy c University Aldo Moro of Bari and INFN Bari Bari Italy d CNR-ISTP and INFN Bari Bari Italy e Abdus Salam ICTP Trieste Italy and INFN Trieste Trieste Italy f Europe organization for nuclear research (cern) CH-1211 geneve 23 Switzerland g went university of science and技术WybrzeåyWyspiaåskiego
purcell增强量子点(QD)单光子发射和设备亮度的增加,已经证明了各种类型的微腔。在这里,我们提出了第一个实现截断的高斯形状的微腔与QD的截断。实施基于湿化学蚀刻和外延半导体过度生长。实验研究了腔模式及其空间纤维,并与模拟很好地吻合。可以通过制造设计可重复控制具有6000张Q-因子的基本模式波长,而29 L EV的小极化分裂可以重复控制,从而使腔体适应了特定的QD。最后,通过温度调节对腔内QD的过渡进行调节和关闭共振。在共振上减少了一个以上的因子减少的衰减时间清楚地表明purcell的增强,而G(2)(0)¼0.057的二阶相关测量结果证明了QDS单光子特性得以保留。
斧头是量子染色体动力学(QCD)中强电荷(CP)问题的引人注目的解决方案,也是天体物理学和宇宙学中动机良好的暗物质候选者[1-7]。尽管轴质量m a与自发对称性破坏f a的能量尺度相关,但QCD本身并不限制m a或f a [8]。来自天体物理学和宇宙学的观察限制了m a〜10 - 6 - 103μEV[9-13]。轴支和标准模型之间的耦合强度取决于轴质量。对于给定的m a,有一系列与QCD兼容的轴轴耦合Gγ。该区域通常由两个基准QCD轴模型跨越Kim-Shifman-Vainshtein- Zakharov(KSVZ)模型[14,15]和Dine-Fischler-Srednicki-Zhitnitsky(DFSZ)模型[14,15] [16,17]。轴突状颗粒(ALP)具有光子耦合在QCD预测的范围之外的光子耦合也可以作为暗物质,尽管它们无法解决强大的CP问题[5]。