图 1 | 单层 WSe 2 中的窄谱线。a ,沉积有 WSe 2 单层的器件示意图。b ,56 µ m × 56 µ m 范围内 1.525eV 至 1.734eV 能量范围内光致发光强度的等高线图。白色虚线标记了潜在的单层区域。c ,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV (P1) 和 1.7206eV (P2)。d ,P1 和 P2 的提取线宽,绘制为激发功率的函数。低激发功率的光谱显示 P1 和 P2 的分辨率受限线宽。e,P1 和 P2 的光子发射积分计数随着
b“氧扩散,在整个共培养室中产生氧梯度。含有10%氧气的基底外侧气流通过气体入口进入,并用磁性搅拌器均匀地通过不对称的共培养室扩散。排气通过气体插座排放,完成了系统的气流(Fofanova等,2019)。该图是使用生物者创建的。(b)不对称共培养室的物理图片。(c)在将FITC-DEXTRAN添加到包含Tigk单层的Transwells的顶端室后,在24小时内比较了基底外侧室内FITC-脱骨的荧光强度。在常规氧培养条件下未分化(阴性对照)和分化的Tigks(称为\ XE2 \ X80 \ X9CNORMOXIC \ XE2 \ X80 \ X9D)与在不对称培养条件下的分化Tigk(称为AS AS AS) \ xe2 \ x80 \ x9casymmetric \ xe2 \ x80 \ x9d)。对于每种条件,减去空白培养基的背景荧光强度。未分化的TIGK单层在正常氧状态下培养,然后切换为包含Ca 2+的分化培养基,用作负面对照。(N.S.:p> 0.05,***:p <0.001,n = 2技术重复,n = 3个生物重复序列)。(e)在常氧和不对称培养条件下培养的TIGK单层中细胞活力的比较。热处理细胞是阴性对照(N.S.:p> 0.05,**:p <0.01,n = 3,n = 3)。(d)Transwell插入物中的Tigk单层的形态在正常氧化条件下维持在细胞培养培养基中,或在不对称的共培养室中培养24小时。已知胶原蛋白由于胶原纤维的存在而影响明亮的田间成像,与未涂层的表面相比,该胶原纤维可能会掩盖所观察到的细胞或结构的细节(Hashimoto等,2020)。
二维(2D)材料已实现了现代微型化设备中有希望的应用。但是,设备操作可能导致温度升高和热应力,从而导致设备故障。要应对此类热挑战,需要充分了解热膨胀系数(TEC)。在这里,我们表征了过渡金属二甲基化金(TMD)单层的平面内TEC,并使用三底物方法证明了卓越的精度。我们的测量结果证实了2D单层TEC的物理范围,因此解决了文献中两个以上的数量级差异。此外,我们确定了组成元素的热化学电负性差异作为描述符,从而可以快速估计TECS对各种TMD单层。我们的工作提出了TMD单层热膨胀的统一方法和描述符,该方法可以作为可靠2D设备合理设计的指南。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的设备示意图。 b ,在 56 µ m × 56 µ m 上,能量范围在 1.525eV 和 1.734eV 之间的光致发光强度云图。白色虚线标记了潜在的单层区域。c ,WSe 2 单层中局部发射极在 4.5K 下的光致发光光谱,随着激光功率的增加显示出不同的发射行为,以 1.7167eV(P1)和 1.7206eV(P2)处的峰值为主。d ,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,P1 和 P2 的光子发射的积分计数随着激光功率的增加显示出超线性和亚线性行为
在本文中,我们探讨了MOS 2和WS 2 2D单层的能力,可通过产生高阶谐波在Terahertz范围内产生辐射。这种现象是通过基于Monte Carlo方法的粒子集合随机模拟方法研究了电子载体种群对应用电场的非线性响应的结果。对电场振幅,外部温度和激发频率进行了研究,研究了产生的谐波信号的功率。此外,模拟工具的随机性使得可以从扩散状态的固有载流子速度波动带来的背景光谱噪声中辨别出纯粹的离散谐波信号,从而允许设置带宽阈值以进行谐波提取。发现,与低温下的IIII-V半导体相比,两个TMD都显示出相似的阈值带宽,而WS 2将是迄今为止MOS 2的更好选择,用于利用7次和第9次谐波。
摘要:利用油水界面上的主客体分子识别,设计并制备了一种新型光响应性纳米颗粒表面活性剂 (NPS) 来结构化液体。借助聚合物表面活性剂,界面主客体相互作用可以显著增强,导致 NP 单层的快速形成和组装,并提供足够的结合能以保持 NP 处于堵塞状态。NPS 的组装可以通过光切换的堵塞到解堵转变进行可逆操纵,使界面以及宏观组装体对外部触发(光子)具有响应性。这项研究首次通过引入主客体化学为构建多响应、结构化的全液体系统开辟了一条途径,展示了在封装、输送系统和独特的微流体装置中的潜在应用前景。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
摘要 - 石墨烯的进步在探索其用于不同应用程序的属性方面产生了需求。探索其特性的一种方法是降低其疏水性。为了克服石墨烯的疏水性,表面活性剂已用于功能化,从而改善了石墨烯单层的表面特性。因此,研究CVD石墨烯的表面活性剂处理对于理解石墨烯的表面特性影响很有用。这项研究利用硅底物上的CVD石墨烯。在不同的治疗时间内,用不同浓度的巧克力(SC)进行处理。然后,使用原子力显微镜(AFM)对这些样品进行表征,以研究处理前后样品的表面特性。要优化,石墨烯必须保持在硅底物上。结果表明,基本上是SP 2结构的石墨烯的完整性,因为即使在处理SC溶液的重量/体积浓度为1%的重量/体积浓度下,底物也没有分层。