纠缠是量子力学的核心,其最重要的用途之一是检验贝尔不等式,以进一步加深我们对现实和局域性的理解 [ 1 ]。最常见的方法是,通过检查一对纠缠光子之间的相关性来进行该测试 [ 2 ]。尽管自 20 世纪 70 年代和 80 年代的开创性工作以来,已经对贝尔不等式进行了许多测试 [ 3 – 5 ],但尚未取得无条件的结果。一个根本原因是,在此类测试中产生的很大一部分光子在测量过程中未被检测到。虽然测量到的相关性可以用量子力学来解释,而且大多数人认为量子力学确实是这些相关性背后的机制,但低测量效率确实为巧妙设计的局部隐变量理论提供了可能性,该理论可以在不借助量子力学的情况下重现观察到的相关性 [ 6 , 7 ]。要使用 Bell 的原始方案来弥补漏洞,从光子的产生到探测,总效率至少需要达到 83% [ 1 ]。通过利用非最大纠缠,Eberhard 能够将这个效率要求放宽到 67% [ 8 ]。但即使是这个更温和的效率要求仍然是一个极其困难的技术挑战,直到最近才得以实现 [ 9 , 10 ]。虽然这足以弥补检测漏洞,但许多提议的量子信息应用还有一项额外要求,即光子处于单一光学空间模式。在本信中,我们报告了对称、单空间的实验演示 -
集成的光子学是一种在应用程序的各个领域,包括光学共同传感和生物传感。尤其是,片上生物感应引起了极大的兴趣,这是由于其在低成本,紧凑性和低检测极限方面的潜力。CMOS兼容的氮化硅(SIN X)目前在片上光谱中起着重要作用,是可见/近红外(MR)平台的首选材料[1]。然而,sin x在蓝色/紫外线波长下遭受高吸收损失[2]。已经努力研究了在紫外线波长的波导,但紫外线平台仍处于起步阶段。对于理想的光子平台,低损耗和单模操作对于结合芯片上多个光学组件至关重要。最近,X。Liu等[3]报道了一个单晶AIN平台。从k = 390 nm处的出色胶片质量,中等的波导损失为8 db/cm。然而,即使使用电子束光刻,大波导维度和高指数(N)值为2.2也会导致多模式引导。相反,使用原子层沉积(ALD),氧化铝(A10 X)具有较低的折射率值,高于220 nm [4]的高透明度,可以很好地控制A10 X膜的均匀性和厚度。G.N. West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。 在402 nm的波长下证明了5 dB/cm的传播损失。G.N.West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。West等。在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。在402 nm的波长下证明了5 dB/cm的传播损失。此外,它们的平台将氧化硅(Sio X)的实现为硬面膜,后来将其作为顶级层面。尽管这将有效地降低核心和覆层之间的指数对比,然后减少散射损失,但Sio X-覆层不可避免地会抑制平台的生物感应电位。在本文中,我们提出了由常规接触光刻(Karl Suss Ma6对准器)制造的空气层单模A10 X波导。在实施昂贵且耗时的步进光刻之前,该A10 X平台利用了一种高效且具有成本效益的光刻工具来制造紫外线/紫罗兰色频谱设备的研究原型。
© 2023 Wiley‑VCH GmbH。保留所有权利。这是以下文章的同行评审版本:Cui, J., Chua, Y., Han, S., Wang, C., Jin, Y., Li, J., Zeng, Y., Wang, Q., Ye, M., Chen, W., Zhu, S., Sun, F., Li, L., Davies, A. G., Linfield, E. H., Tan, C. S. & Wang, Q. J. (2023). Single-mode electrical pumped terahertz laser in an ultracompact chamber via merging bound states in the continuum. Laser and Photonics Reviews,最终版本已发布于 https://doi.org/10.1002/lpor.202300350。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。
Pina, DH Parmar, G. Bappi, C. Zhou, H. Choubisa, M. Vafaie, AM Najarian, K. Bertens, LK Sagar, Y. Dong, Y. Gao, S. Hoogland, MI Saidaminov, EH Sargent, Adv. Mater. 2021, 33, 2006697,最终版本已发布于 https://doi.org/10.1002/adma.202006697。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。
摘要:三光子产生 (TPG) 是一种三阶非线性光学相互作用,其中能量为 ћω p 的光子分裂为三个光子,分别为 ћω 1 、 ћω 2 和 ћω 3,其中 ћω p = ћω 1 + ћω 2 + ћω 3。三重态具有与光子对不同的量子特征,这对量子信息具有浓厚的兴趣。在本研究中,我们首次实验演示了在 ћω 1 处对三重态的一种模式进行刺激的 TPG,之前对 TPG 的研究涉及在 ћω 2 和 ћω 3 处对两种模式进行刺激。非线性介质是在 λ p = 532 nm 下以皮秒模式(15 ps,10 Hz)泵浦的 KTiOPO 4 晶体。刺激光束由可调光学参量发生器发射:在刺激波长 λ 1 = 1491 nm 处发现相位匹配,三重态的另外两个模式在正交极化下为 λ 2 = λ 3 = 1654 nm。使用超导纳米线单光子探测器,对两个生成模式的极化和波长特征的测量与计算完全一致。在模式 2 和 3 上每个脉冲可以产生总计 2 × 10 4 的光子数,这相当于每个脉冲产生 10 4 个三重态,或者每秒产生 10 5 个三重态,因为重复率等于 10 Hz。我们在未耗尽泵浦和刺激近似下,在海森堡表示中的非线性动量算符的基础上开发的模型框架中解释了这些结果。
摘要:本文研究了光子加三重相干态(PATCS)的高阶非经典特性与纠缠特性,采用高阶单模反聚束准则来衡量光子加操作的作用,并研究了PATCS中高阶三模和压缩与纠缠特性的一般检测准则。结果表明:对三重相干态进行光子加操作可以增强高阶单模反聚束和高阶三模和压缩的程度,增大光子加三重相干态的高阶三模纠缠因子值。此外,随着高阶值的增加,单模反聚束和纠缠特性的表现更加明显。
量子计算机承诺执行某些被认为对古典计算机棘手的任务。玻色子采样是这样的任务,被认为是证明量子计算优势的有力候选者。我们通过将50个不可区分的单模单模状态发送到具有完整连接性和随机矩阵的100模式超级失误干涉仪中,通过将50个不可区分的单模单模式挤压状态发送到了高斯玻色子采样 - 整个光学设置是相锁的 - 并使用100个高效的单光子检测器对输出进行采样。针对利用热状态,可区分的光子和均匀分布的合理假设验证了所获得的样品。光子量子计算机Jiuzhang最多生成76个输出光子点击,该光子可产生10 30的输出状态空间尺寸,而采样速率比使用最先进的仿真策略和超级计算机的采样率更快。t