量子计算机承诺执行某些被认为对古典计算机棘手的任务。玻色子采样是这样的任务,被认为是证明量子计算优势的有力候选者。我们通过将50个不可区分的单模单模状态发送到具有完整连接性和随机矩阵的100模式超级失误干涉仪中,通过将50个不可区分的单模单模式挤压状态发送到了高斯玻色子采样 - 整个光学设置是相锁的 - 并使用100个高效的单光子检测器对输出进行采样。针对利用热状态,可区分的光子和均匀分布的合理假设验证了所获得的样品。光子量子计算机Jiuzhang最多生成76个输出光子点击,该光子可产生10 30的输出状态空间尺寸,而采样速率比使用最先进的仿真策略和超级计算机的采样率更快。t
在过去的二十年中,Quantum Internet [1]和量子计算的实施已经有很大的推动。已经研究了这些量子技术的不同构件:量子记忆和中继器[2,3],单光子源[4],量子门和接口[5]。接口所有这些组件的研究最多的系统之一是光子[6]:它们可以在室温下进行操作而无需折叠,可以通过具有最小的损失的标准光学纤维网络传输,并提供了许多自由度来编码信息,例如。极化,频率或相位。选择编码方案时,可以优先使用高维方案,因为它具有许多优势,例如量子密钥分布和更高的信息率的更高安全性[7 - 10]。编码高维量子信息的最健壮的方案之一是时间模式,因为它们可抵抗纤维中的分散,并且自然提供了高维基集。在此方案中,信息是按照红外波长的时间自由度来编码的,然后通过FILER网络路由到不同的设备或用户。要在这些时间模式中读取量子信息,一个量子接口可以单独解决输入信号的每个时间模式,即以单模操作为特征,然后是必要的。近年来,量子脉冲门(QPG)[11]的上升是一种理想的单模界面,以操纵光的光模式。但是,终极多亏了可重新发现的单模传输函数,QPG可以从输入信号中选择单个时间模式;通过总和频率产生(SFG)过程将所选模式上转换为较短的波长,并且信号正交的部分与传输函数的部分保持不转化。以这种方式,QPG设备自然满足了量子接口的两个独立关键要求:它允许在不同波长下运行的量子光学设备进行通信,并利用时间模式来进行量子通信,计算和计量学。QPG的单模操作已经成功地用于许多应用程序[5],例如在量子状态层析成像[12]中,光谱带宽压缩到界面不同的量子系统[13]和量子计量学[14,15]中。为了进一步开发这些演示,以对日常应用,效率和纯粹的单模,其中包括空间和时间,操作至关重要。
线宽 (3 dB) • 2500W 单模 • 窄线宽 • 1050 - 1080nm 输出 • 低 SWaP • 3 m 传输光纤 • 内部/外部种子 ±0.5 或更好
“使用光子线键合在硅光子集成芯片上的包装可调单模III-V激光”,(2024)Deenadayalan等人,IEEE,IEEE 74th(ECTC),Denver,Colorado,Colorado,USA
论文还展示了近期的突破性成果,展示了窄带高功率 DFB 源,以及半导体光放大器 (SOA) 增益芯片的初步结果。此外,论文还强调,BluGlass 已成功展示了集成 GaN 主振荡器功率放大器 (MOPA),该放大器在单一空间模式下实现了 750 mW 的功率。集成设备用与半导体光放大器对齐的快轴和慢轴透镜取代单模激光器,在减小尺寸和复杂性的同时提高了功率。BluGlass 首席执行官 Jim Haden 表示:“我们在可见光 GaN 激光器、单模、近单频、MOPA 和光子集成解决方案方面的领先进展是革命性行业的关键第一步,包括航空航天、国防、量子计算和生物医学应用。” BluGlass 正在扩展可见激光能力的范围,从紫色到蓝绿色的 DFB 波长的增加、世界一流的噪声抑制以及单模激光器与功率放大器的集成,在单一空间模式下可实现 750 mW 的蓝光,这些都证明了我们世界领先的团队所开创的惊人创新。“我们不断增长的战略能力使 BluGlass 能够利用量子传感、通信和计算等令人兴奋的增长市场。这些进步将使我们的客户能够通过创建局部量子解决方案来解决复杂问题,例如大气激光雷达检测晴空湍流、水下通信和激光雷达以及 GPS 欺骗和干扰。
化学 在某些应用中,光纤被传送到需要光学传感的区域。传送光纤的流体可能对光纤涂层有害。Fibercore 具有合适的涂层,不仅可以承受光纤的传送,还可以承受操作后残留的化学环境。纯硅芯单模和渐变折射率纯芯多模聚酰亚胺涂层光纤(第 54-55 页和第 99 页)非常适合恶劣的化学环境。此外,单模光纤中也可以写入 FBG,并且该区域可以涂上化学敏感材料,这些材料会在某些目标化学物质存在时膨胀/收缩。通过这种方式,光纤可以成为分布式化学传感器。FBG(第 102 页)和我们的纯硅芯单模聚酰亚胺涂层光纤(第 54-55 页)为这种类型的传感提供了组件。
• 需要光束组合以进一步提高功率 • HP 工业光纤激光器:带宽(~5-10nm)-> 不可光束组合;或多模光纤(强度降低)-> 光束质量 (BQ)/亮度较差 • 可光束组合光纤:需要窄线宽和单模 BQ
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
第四章 量子光学基础 51 4.1. 简介 51 4.2. 电磁场的量化 51 4.2.1. 经典电磁学回顾 51 4.2.2. 电磁场的量化 53 4.2.3. 量化场的对易关系 55 4.3. 玻色子高斯态 56 4.3.1. 简介:单模 56 4.3.2. 多模 58 特征函数 58 玻色子高斯态 59 高斯幺正运算 61 例子:高斯纯态 62 4.3.3. 应用于弱相互作用 BEC 63 4.4. 费米子高斯态 65 4.4.1. 简介:单模 65 4.4.2.多模式 66 高斯幺正运算 68 例子:费米子高斯纯态 70 费米子相干态和特征函数 71 4.4.3. 对 BCS 超导体的应用 75 4.5. 变分原理 77 4.5.1. 简介 77 4.5.2. 复值变分流形 78