背景:副型经牙性神经刺激(PTENS)是用于遗传性难治性一线治疗的一种治疗方法。本综述旨在评估PTEN在儿童和Ado lescents中治疗单次症状遗传(MNE)方面的有效性。方法:研究遵循系统(PRISMA)指南的首选报告项目。搜索是在以下数据库中进行的:MEDLINE(通过PubMed),Web of Science,Scopus,Central Cochrane库和物理疗法证据数据库(PE DRO)。选定的研究是随机临床试验(RCT)。使用“随机试验的偏见工具的风险”和“偏见可视化的风险”用于分析偏见的风险。结果:在选定的624项研究中,有四个RCT符合条件。三个包括146个孩子
摘要:LIDAR已成为水中垂直分析光学参数的有前途的技术。单光子技术的应用使紧凑型海洋激光雷达系统的发展,促进了其在水下部署。这对于进行空气海界面上没有干扰的海洋观测至关重要。然而,同时在532 nm(βM)处于180°处的体积散射函数,而在弹性反向散发信号中,在532 nm(k m激光拉尔)处的激光雷达衰减系数仍然具有挑战性,尤其是在几何近距离信号中受到了几何形状重叠因子(GOF)的影响。为了应对这一挑战,这项工作提出了添加拉曼通道,使用单光子检测获得了拉曼反向散射的轮廓。通过用拉曼信号将弹性反向散射信号归一化,归一化信号对激光雷达衰减系数变化的敏感性大大降低。这允许将扰动方法应用于反转βM并随后获得K M LIDAR。此外,可以降低GOF和激光功率中波动对反转的影响。为了进一步提高分层水体的反转算法的准确性,提出了迭代算法。此外,由于激光雷达的光望远镜采用了一个小的光圈和狭窄的视野设计,因此K M LIDAR倾向于在532 nm处的光束衰减系数(C M)。使用Monte Carlo模拟,建立了C M和K M LIDAR之间的关系,从而允许C M衍生物来自K M LIDAR。最后,通过反演误差分析来验证该算法的可行性。通过在水箱中进行的初步实验来验证LiDAR系统的鲁棒性和算法的有效性。这些结果表明,LIDAR可以准确地介绍水的光学参数,从而有助于研究海洋中的颗粒有机碳(POC)。
引用本文,请注意,在King's Research Portal上提供的全文是作者接受的手稿或后印刷版本,这可能与最终发布的版本不同。如果引用,建议您检查并使用发布者的权威版本进行分页,音量/问题以及出版物的详细信息日期。以及在研究门户网站上提供最终发布的版本的地方,如果建议您再次援引您的任何后续更正检查发布者的网站。一般权利的版权和在研究门户网站上可访问的出版物的权利由作者和/或其他版权所有者保留,这是访问用户认识并遵守与这些权利有关的法律要求的出版物的条件。
1 Broer,S。&Gauthier-Coles,G。哺乳动物细胞中的氨基酸稳态,重点是氨基酸转运。J Nutr 152,16-28(2022)。https://doi.org:10.1093/jn/nxab342 2 Blau,N.,Duran,M.,Gibson,K。M.&Dionisi-Vici,C。遗传代谢疾病的诊断,治疗和随访的医生指南。3-141(Springer-Verlag,2014年)。 3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加? 营养12(2020)。 https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。3-141(Springer-Verlag,2014年)。3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加?营养12(2020)。https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.3390/nu12103087 4 White,P。J.等。胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。mol Metab,101261(2021)。https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M.Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。6 Seow,H。F.等。hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。nat Genet 36,1003-1007(2004)。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。抑制中性氨基酸转运以治疗苯酮尿症。JCI Insight 3(2018)。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。遗传代谢疾病杂志N/A(2022)。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。缺乏中性氨基酸转运蛋白B(0)AT1(SLC6A19)的小鼠的FGF21和GLP-1水平升高并改善了血糖控制。MOL METAB 4,406-417(2015)。 https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140MOL METAB 4,406-417(2015)。https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。前药11,140(2020)。https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.3389/fphar.2020.00140
捕获离子量子信息处理的常用方法是利用电子态存储信息,而离子链共享的运动模式可实现纠缠操作[1]。然而,运动模式可以发挥更积极的作用。例如,运动自由度可用于存储量子信息[2],从而允许使用捕获离子进行连续变量的量子信息处理。运动模式也是量子逻辑谱学中非常重要的工具[3],这使得精确的原子钟成为可能[4]。此外,在计量学中,非经典离子运动状态可以发挥优势[5 – 7]。从更基本的方面来看,捕获离子运动在量子热力学研究中充当工作介质[8 – 10]。研究陷阱势变化时声子对产生的动力学可以模拟粒子的产生,从而建立量子信息处理和宇宙学之间的联系[11]。最后,局部声子的测量及其跟踪使得运动自由度的量子模拟成为可能[12,13]。捕获离子的运动可以用各种方法测量[8,12,14 – 19],包括通过交叉克尔非线性[18,20,21]和复合脉冲序列[12]。还有使用快速绝热通道(RAP)[22,23]和受激拉曼绝热通道(STIRAP)[24]序列或多色振幅调制的方案
图 1. 使用可注射储库技术缓慢递送显示 SARS-CoV-2 受体结合结构域 (RBD-NP) 的纳米颗粒抗原和分子佐剂,可实现强效、广泛和持久的 COVID 免疫。可注射聚合物纳米颗粒 (PNP) 水凝胶疫苗示意图,其中十二烷基改性羟丙基甲基纤维素 (HPMC-C 12 ) 与聚乙二醇-b-聚乳酸纳米颗粒 (PEG-b-PLA NPs) 和疫苗货物 (RBD-NP 和临床相关的分子佐剂) 相结合。聚合物和 NP 之间的动态、多价非共价相互作用导致物理交联的水凝胶,其独特的分层结构使得疫苗成分能够在用户定义的时间范围内共同递送。可以调整聚合物与纳米颗粒的比例来调节水凝胶的机械性能,以适应不同的疫苗货物释放动力学。
摘要。比特币体系结构在很大程度上依赖于ECDSA Signature方案,该方案被量子对手打破,因为可以从量子多项式时间中的公共密钥中计算秘密密钥。为了减轻此攻击,可以将比特币支付给公共密钥(P2PKH)的哈希。但是,第一个付款揭示了公共密钥,因此附加到其上的所有位硬币都必须同时花费(即剩余的金额必须转移到新的钱包中)。在这种方法中仍然存在一些问题:业主很容易受到签名公开的时间到签名的时间,并承诺将其投入区块链。此外,阈值签名没有等效的机械性。最后,尚未对P2PKH进行正式分析。在本文中,我们用隐藏的公钥对挖掘签名的安全概念进行了正式的安全概念,我们提出并证明了通用转换的安全性,该通用转换将经典签名转换为仅一次可以使用一次的量子后签名。我们将其与P2PKH进行了比较。也就是说,我们的建议依赖于前图像的抵抗力,而不是p2pkh的碰撞阻力,因此可以较短的哈希。补充,我们提出了延迟签名的概念,以解决与公共分类帐使用时匆忙对手的问题,并讨论我们方法的优势和缺点。我们将结果进一步扩展到阈值签名。
摘要:动作的执行或想象由皮质电位反映,可通过脑电图 (EEG) 记录为运动相关皮质电位 (MRCP)。从单次试验中识别 MRCP 是实现脑机接口 (BCI) 自然控制的一项具有挑战性的可能性。我们提出了一种基于最佳非线性滤波器的 MRCP 检测新方法,处理包括延迟样本在内的不同 EEG 通道(获得时空滤波器)。通过改变时间滤波器的顺序和输入数据的非线性处理,可以获得不同的输出。这些滤波器的分类性能通过对训练集进行交叉验证来评估,选择最佳滤波器(适应用户)并从最佳三个滤波器中进行多数投票,以使用测试数据获得输出。将该方法与我们团队最近推出的另一种最先进的滤波器进行比较,该滤波器应用于 16 名健康受试者记录的 EEG 数据,这些受试者执行或想象 50 次自定步调的上肢手掌抓握。新方法对整个数据集的平均准确率为 80%,明显优于之前的滤波器(即 63%)。对于具有异步、自定步调应用程序的在线 BCI 系统设计,它是可行的。
因果关系这一主题最近在量子信息研究中引起了广泛关注。这项工作研究了过程矩阵之间的单次判别问题,这是一种定义因果结构的通用方法。我们提供了正确区分的最佳概率的精确表达式。此外,我们提出了一种使用凸锥结构理论实现此表达式的替代方法。我们还将判别任务表示为半正定规划。因此,我们创建了 SDP 来计算过程矩阵之间的距离,并根据迹范数对其进行量化。作为一个有价值的副产品,该程序找到了判别任务的最佳实现。我们还发现了两类可以完美区分的过程矩阵。然而,我们的主要结果是考虑与量子梳相对应的过程矩阵的判别任务。我们研究了在判别任务期间应使用哪种策略(自适应或非信号)。我们证明了无论选择哪种策略,区分两个过程矩阵为量子梳的概率都是相同的。
简介 自体造血干细胞 (HSC) 基因疗法治疗血红蛋白病已显示出良好的临床疗效 (1–4)。然而,目前的方案包括分离患者 HSC、使用整合载体进行体外基因改造以及在骨髓毒性 BM 调理后重新输注改造后的 HSC,这些方案在技术上很复杂且成本高昂。我们正试图开发一种体内 HSC 基因治疗方法,这种方法不需要骨髓消融和整合载体,而且在技术上更容易。在这种方法中,我们使用衣壳修饰的辅助依赖性 HDAd5/35++ 载体 (1, 2)。这些载体靶向 CD46,这是一种在原始 HSC 上表达的受体 (2, 3)。在通过常规用于 HSC 动员/收获的药剂将 HSC 从 BM 动员后,将 HDAd5/35++ 载体静脉注射。动员的 HSC 在周围时被转导。大部分 HSC 返回 BM。动员造血干细胞对于体内转导至关重要,因为在骨髓中,造血干细胞被细胞外基质蛋白包围(4),基因转移载体无法接触(2)。为了扩增体内转导的造血干细胞,我们目前使用一种基于突变 O 6 -甲基鸟嘌呤-DNA 甲基转移酶(mgmt P140K)基因的体内选择机制,该基因可产生对 O 6 -BG/BCNU 的抗性
